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Abstract 
 

In the first days following a disaster, humanitarian decision makers often deal with a scarcity of 

information on the spatial aspects of the event’s impact, and thus the need for humanitarian aid of the 

affected population. By learning from data of past events Priority Index Models (PIM’s) can rapidly 

produce an estimate of a disaster’s impact, which can help decision makers to identify aid priority areas. 

This enables empirically-based decision support, in contrast to the more subjective models that are 

currently used. The main objective of this study is to explore the usability of pre- and post-event open 

data to train a model to rapidly estimate post-earthquake aid neediness for any earthquake prone area 

on earth. As far as known, machine learning algorithms have not been applied before to predict aid 

priority areas after seismic hazards specifically. To achieve the research objective the Gorkha 

earthquake of 2015 in Nepal was used as a test case. Country- and hazard-specific open data related to 

this earthquake were used to predict aid-neediness. Damage to residential buildings was select as the 

most suitable aid-neediness indicating variable. Three different statistical models were fitted to the 

data: a multivariate linear regression model and two random forest regression models (one predicting 

completely damaged houses and the other predicting a combination of completely and partially 

damaged houses). 24 variables in four different categories (hazard, exposure, physical vulnerability and 

socio-economic vulnerability) were identified as predictors of post-earthquake structural damage. All 

three models could successfully produce an output on administrative level 4 (VDC) for the 16 most 

affected districts. Statistically, the random forest model predicting bot partially and completely 

damaged houses performed best with an R-squared of 0.63 on an independent test dataset. However, 

the random forest model predicting only completely damaged is favourable because the output is more 

intuitive and extendable. Also, the R-squared is not much lower with 0.60 and two-third of the highest 

priority areas were identified correctly. The linear model prediction resulted in an R-squared of 0.53.  

Additionally, this model’s output gave reason to suspect that the identified relationship between ‘school 

attendance’, ‘toilet presence’ and ‘foundation type’ and damage might not be applicable to other events 

or countries. The mean Macroseismic intensity and total population were most important in all models 

and are considered to be indispensable model components. For a future event within Nepal a model 

output of similar accuracy can be expected, but the presence of case- and country-specific relationships 

in the current model makes a useful estimation for a future event in another country very unlikely. 

However, after training the model on events in different countries the model is expected to be able to 

produce an output that is useful for aid prioritisation decision making. The extent to which the model 

can be successfully applied to different countries and cases can be improved by excluding secondary 

hazard susceptibility variables, finding an alternative uniform socio-economic vulnerability variable and 

using composite building quality variables. Model simplicity and data preparedness are key aspects in 

the successful further development of these models.  
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1 Introduction 
 

Data of the EM-DAT database, containing emergency events since 1988, show that while only 3% of all 

people affected by a natural disaster are affected by an earthquake, earthquakes are responsible for 

55% of all direct deaths caused by natural disasters. Earthquakes have claimed more lives than all other 

types of geophysical disasters together, killing nearly 750,000 and affecting 121 million people globally 

(CRED, 2015). Besides an increase of the world population, another cause for these high numbers is that 

urbanization within earthquake-prone areas has increased significantly in the last years. This has 

increased the likelihood that a seismic hazard will turn into a major catastrophe (CRED, 2015; Smolka et 

al., 2004). Especially in development countries natural disasters have both more macroeconomic and 

social impact. This is a result of insufficient mitigation and prevention measures such as seismic proof 

building and efficient warning systems (Ortuño et al., 2013). 

In order to minimize the impact of such a deadly event in these regions national, international and 

transnational organizations take all sorts of pre- and post-disaster measures. One of the actors to assist 

in post-disaster response and recovery are humanitarian aid organizations. They deliver material and 

logistic assistance in order to save lives and reduce human suffering. They usually operate under 

exceptional and turbulent circumstances. Often they have to plan complex disaster response based on 

forecasts or without reliable field assessments (Pedraza-Martinez, 2013). Making decisions is a 

challenge because of the constantly changing situation and scarcity of information (ACAPS, 2016). While 

time is limited aid workers must be able to zoom in on local situations as well as zoom out to see the 

bigger picture.  

Because time and quantity of the organization’s relief resources are limiting factors, emergency 

managers have to find an optimal schedule for assigning resources to the affected areas (Fiedrich et al., 

2000). To make decisions about where, what and how much of their goods and services should be 

distributed, humanitarian organizations rely upon assessments carried out by NGO’s and local 

institutions present in the affected area. The Inter-Agency Standing Committee (IASC) coordinates 

multiple actors to perform needs assessments in fixed formats after a humanitarian emergency. As a 

joint effort of key stakeholders a Multi-Cluster Initial Rapid Assessment (MIRA) is performed in the 

immediate aftermath of a sudden-onset disaster. Though they do not always succeed, they aim to 

produce a Preliminary Scenario Definition which provides a situation overview and indicates the 

estimated number of affected people in the impacted area within the first 72 hours. A more detailed 

MIRA output is presented in the MIRA Report within two weeks (IASC, 2012a, p. 5). In the initial phase 

however, when these assessments are not available yet, decision makers rely upon other secondary 

qualitative information sources. One aid worker mentioned that his idea of the spatial distribution of a 

disaster’s impact in the first days is formed mostly by driving around a lot in the area (Becks, 2016). 

Depending on how much exposure an area receives in both the humanitarian community and mass 

media this can lead to over and under serving of places (Johnson, 2015). 

 



 

1.1 Problem Statement 
Humanitarian aid organizations are thus often faced with problems of resource allocation decision 

making. The main cause for this is the absence of needs assessment results and scarcity of credible 

information in the immediate aftermath of a disaster. As a consequence of this, it is possible that relief 

resources are distributed unequally. As indicated in the Sphere Standards, internationally recognized 

sets of common principles and universal minimum standards in life-saving areas of humanitarian 

response, the first step in humanitarian response is to assess the needs of the affected population, and 

design a prioritized plan of action based on those needs (The Sphere Project, 2011). One key objective 

of a needs assessments is thus to identify immediate humanitarian priorities (IASC, 2012b). In this 

process "setting priorities is part of strategic response planning" (Benini, 2015). A supportive tool which 

rapidly produces an accurate overview of the overall aid neediness in an affected area could help to 

identify priority areas. An increasing amount of research concerns mathematical models and systems 

which help in the decision aid processes developed when trying to respond to the consequences of a 

disaster (Ortuño et al., 2013). Numerous tools have been developed to support prioritisation, but a 

universally suitable algorithm to establish priority indices has not been established (Benini 2015).  

 

1.2 Towards a Solution 
Such a rapid needs assessment that helps aid distributers to prioritize can be performed by means of a 

Priority Index Model (PIM). As Figure 1.1 explains, this model produces an estimation of the spatial 

distribution of post-disaster human priorities based on event-specific data and a pre-composed risk 

database. 

 
Figure 1.1: Basic principle of a Priority Index Model. 

The empirical model quantifies the relationship between on the one hand event-specific and country-

specific data (in the risk database), and on the other hand aid neediness, the output. The relationship 

between those factors is derived from the analyses of pre- and post-event data of past events, hence 

called empirical. By requiring only little event-specific data the model can produce rapid estimations for 

future events immediately after they take place.  

The concept of PIM’s is relatively new and the possibilities that models such as the one described above 

offer are only recently being discovered by humanitarian decision makers. Nevertheless, the subject has 

been explored before which provides some preliminary knowledge. To build on to the existing 

knowledge and experiences, this study proposes a method for developing an Earthquake PIM that is 

empirically underpinned and adapted to the current data environment, characterized by a large quantity 

of openly available datasets. To assess the possibilities of this methodology a PIM will be developed for 

Nepal. Information of the 7.8 Mw Gorkha earthquake of 25 April 2015 will be used to train the model. 

This earthquake killed nearly 9,000 people and destroyed more than 500,000 homes (OCHA, 2015b). 

The main reason for the selection of this event is the relatively extensive amount of assessment data 

that is openly available.  



 

The fact that PIM’s are a relatively new study subject also means that there is little known about what 

statistical model best to use to define the empirical relationships. A quantitative comparison of two 

different statistical models can provide new theoretical insights and practical recommendations. On the 

one hand a more traditional multivariate linear regression model (LM) is applied, which is a logical choice 

given the fact that there are multiple factors prediction one outcome. On the other hand a random 

forest regression (RF) algorithm is applied. This algorithm could be described as the machine learning 

version of the LM. Machine learning models originated in the artificial intelligence domain and are 

computational models based on more complex algorithms that can learn from the training data and 

improve themselves, therefore they generally produce more accurate model predictions than classical 

LM’s, but they do come with some of their own limitations regarding insight in relationships between 

variables. Also the way in which both models are built requires different data preparations. Therefore, 

the models will be compared not only in terms of predictive accuracy, but also in terms of general 

usability and suitability for implementation in humanitarian decision making processes. Both models 

and their applications are explained in more detail in Chapter 4 Methodology.  

Current rapid impact and severity prediction models mostly generate output by creating composite 

measures of hazard-, exposure- and vulnerability related variables. Often these are then multiplied using 

equal or subjective weighing. Both pre-composing measures and equal weighing are questionable 

because of a lack of empirical evidence to do so. By making use of automated predictor variable 

selection methods the model will largely refrain from making subjective assumptions, pre-selection of 

variables and weights assignment. 

As mentioned, the model to be developed aims to be adapted to the current data environment. One 

reason for this aim is reproducibility of the model for other earthquake prone areas on earth. To develop 

one model that is applicable to many areas over time has many advantages over the development of 

separate models for individual countries. Some of these advantages are standardizations of data 

collection processes, multiplication of training cases and a larger target area. This implies that the model 

will run on open data as much as possible. The fact that national authorities in development regions 

often keep less detailed and frequent country datasets can form a challenge. Data availability can thus 

steer rather important modelling decisions. In this perspective the method can be viewed as a data-

driven approach.  

It is important to mention that PIMs are not intended to be a replacement for other early stage damage 

and needs assessment tools, but rather to support general aid distribution prioritisation and 

comparative analysis based on common indicators in the first (and optionally the second) post-disaster 

phase as defined in the IACS’s Operational Guide for Coordinated Assessments in Humanitarian Crises 

(IASC, 2012b). Therefore the model output will present multi-cluster aid needs and will not specify about 

the specific type(s) of aid needed. Several challenges are faced in this study: 

Challenge #1: Quantifying aid neediness  

Ideally, to quantify the relationships between aid inducing variables and aid neediness of a past event a 

quantitative measure of the level of multi-cluster aid neediness after the event would be the response 

variable. However, since aid neediness is such a broad notion it is not something that is often measured 

quantitatively in surveys. Because of the absence of an objective measure a proxy indicator can be used. 

No studies focussed on the measure of aid neediness specifically for the application of a decision 

support tool have been performed yet. However, structural damage, human losses or economic losses 

caused by an earthquake have been frequently modelled. Logically, these variables show similarities 

with the ones that explain aid neediness in a certain area. But both economic losses and casualties will 



 

not be very useful. Damages in monetary value will not represent communities’ needs correctly, since 

for example heavy damages to valuable governmental structures do not imply any urgent need for basic 

provisions. Neither are human losses in the direct interest of humanitarian aid workers since they do 

not participate in urban search and rescue activities. The selection of a final aid neediness proxy 

indicator is one of the research objectives.  

Challenge #2: Defining predictor variables 

A lot has been written about what variables induce structural, human or economic losses after an 

earthquake. Explanatory variables are often physical vulnerability features and exposure. Severity 

indices or impact models often also include social vulnerability features, such as poverty, age and 

gender. As was explained by Johnson (2015), especially poverty is expected to be an important indicator 

for aid neediness. Although the final selection of indicators will result from the model training, it will be 

necessary to make a data pool of preselected datasets for which an algorithm can be developed. The 

content of the preselected data pool will to a large extent be determined by the availability and accuracy 

of the data. The fact that authorities in development regions keep less detailed and frequent country 

datasets adds another challenge.  

 

Challenge #3: Present output on a low granularity  

The level of geographical aggregation on which the output is presented is very important, since this will 

enable decision makers to better target relief resources to the right locations. If the output is to be 

presented on a low administrative level, so must the data in the risk database be. Especially the 

aggregation of the response variable measure is determining the output level. For the case of Nepal this 

brings an extra challenge, since there is a relatively big difference between administrative levels 3 

(district) and 4 (VDC: Village Development Committee). After a distinction between 75 districts, there is 

a jump to 3,157 VDCs (see Figure 2.1). Many open datasets are available on district level but much less 

on VDC level. Additional problems are faced because of the decreasing number of VDCs since Nepalese 

authorities are continuously merging VDCs in an attempt to increase urbanized settlements 

(Techsansar, 2016). 

 

 
Figure 1.2: Nepal administrative level 3 and 4 borders (data source: HDX, 2016). 

 



 

Challenge #4: Raster generalization 

All input data for the model should be defined at the selected administrative level. This means that input 

data in raster format will have to be generalized. Generalization of raster data is the retrieval of single 

values for larger cells or entities, in this case districts or VDCs, from a continuous raster layer. Depending 

on the application aimed for, simply calculating zonal statistics such as the mean or median of all cell 

values within a polygon is not necessarily the most desirable method. In this study, often not the whole 

geographical area covered by a zone is of interest, but only those areas that are populated. For this 

reason alternative methods to generating single zone values for administrative areas based on a 

continuous raster overlay are explored. 

 

Challenge #5: Enable rapid execution  

While developing the model it should be kept in mind that aid coordinators should be able to run it 

rapidly after an earthquake has struck in a development region. An experienced field worker mentioned 

that on the first day there is hardly ever an informative map available at all. “A map with impact 

estimates in the affected area would be very helpful in the first day, even if it is just to be able to visualise 

the project area where you will work” (Becks, 2016). Therefore it is important that the model runs on 

event-specific data that is quickly available. Also a limited amount of tasks and data processing and 

transformations should be required to run the model on newly available event data.  

 

Challenge #5: Global scope 

Although a single-country and single-event model is developed in this study, the methodology of the 

model aims to form a base for the development of a model targeting all earthquake prone areas on 

earth. This will be taken into account for example during data selection, by favouring datasets that are 

available for multiple countries in development regions over those that are uncommon. Also when 

comparing general usability aspects of the different statistical models this scope will be kept in mind.  

  



 

2 Research Objectives  

 
In this chapter the general research objectives are defined and more specific research questions 

towards achieving these goals are presented. 

 

2.1 Research Objectives 
The main objective of this study is to explore the possibilities and feasibility of using pre- and post-event 

open data to train a model to rapidly estimates post-earthquake aid neediness for any earthquake-

prone area on earth. Such a model aims to identify aid priority areas and thereby support decisions 

about the spatial distribution of humanitarian aid resources. It enables rapid and empirically-based 

humanitarian decision making. Potentially it can be part of IASC’s Preliminary Scenario Definition carried 

out in the first 72 hours after an event. Scientifically, it provides both a theoretical and an empirical base 

to existing (GIS) methodologies for constructing spatial priority indices. By comparing two different 

statistical training methods more insight is gained into what models could best be used for aid priority 

indices. By incorporating post-event damage assessments into the construction of the model it will have 

a strong empirical foundation. 

 

2.2 Research Questions 
Based on the research problem, -objectives and their context as laid out above a main research question 

is formulated. At the same time the main- and according sub-questions help to structure the research 

implementation and reporting. The main research question relates to the more general objective as 

mentioned above. The sub research questions apply specifically to the case of the Nepal 2015 

earthquake. The results and insights of this case study help to answer the main question:  

Based on a case study of the Gorkha 2015 earthquake, what is the usability of pre- and post-event open 

data of past earthquakes in estimating priority areas for humanitarian aid rapidly after an earthquake at 

any place on earth?  

The applied definition of usability is derived from an ISO standard (ISO 9241-11): “usability is the extent 

to which a product can be used by specified users to achieve specified goals with effectiveness, 

efficiency and satisfaction in a specified context of use” (International Organization for Standardization 

1998). Translated to his study, usability concerns the extent to which pre- and post-event open data can 

help PIM admin- and end-users to effectively, efficiently and satisfyingly estimate post-earthquake aid 

priority areas. The related sub research questions are: 

 

1. What impact assessment data is available for quantifying aid neediness following the Gorkha 

earthquake and which fits the study’s objectives best? 

2. What variables, derived from openly available data, are candidate predictors of the defined 

response variable? 

3. Based on a multivariate linear regression model and a random forest regression model, which 

candidate predictors can together make the best possible prediction of the defined response 



 

variable, and what is their (relative) importance?  

4. For predictor variables that are derived from continuous raster data; how is their predictive 

value influenced by adjusting their spatial extent to populated areas rather than complete zonal 

coverage? 

5. How do the models perform regarding the prediction of an independent dataset?  

6. How do the models compare to each other in terms of predictive performance and general 

usability? 

 

2.3 Scope  
In this study a PIM will be developed for seismic hazards in Nepal. Though, the development of a globally 

operating model will be kept in mind while making decisions. With regard to the methodology, this 

research focusses on comparing different statistical models for defining empirical relations and making 

optimal use of the available open data. Apart from landslides, secondary hazards of earthquakes such 

as tsunamis and fires are excluded from the analysis. Landslide risks will be included since they caused 

a lot of damage in the Gorkha earthquake (Government of Nepal National Planning Commission, 2015). 

Priority is given to shaking intensity because 88% of all earthquake damage is caused by primary effects, 

which is ground shaking (Erdik et al., 2011). Since earthquakes are usually not single moment events, 

the temporal extent of the analysis will depend on the defined response variable. If any significant 

aftershocks took place before the collection date of the response data, these aftershocks should also 

be included in the analysis. A major aftershock (7.3 MW) occurred on May 12th in the Middle-Eastern 

part of Nepal. Of the 75 districts in total the government declared 31 as affected of which 14 as heavily 

affected (Government of Nepal National Planning Commission, 2015). Nevertheless, the spatial extent 

of the study area depends on the areas included in the assessment data used for the response variable 

and the area covered by essential predictor data.  

 

  



 

3 Scientific Context 
 

This chapter aims to place the research within its scientific context. What relevant or similar researches 

have been performed and what knowledge gained from these can be useful for this research? Relevant 

concepts are the use of open data in the humanitarian sector, earthquake impact modelling, priority 

indices and the use of past event impact assessments for model training.   

 

3.1 Disaster Response in an Open Data Environment 
The contemporary data environment is increasingly characterized by big data and open data. Data 

collectors and owners are encouraged to openly disseminate it. Open data are data that “can be freely 

used, modified, and shared by anyone for any purpose” (Open Definition, 2016), though license 

restrictions can be in place. Many open data initiatives are supposed to ultimately foster collaboration, 

creativity and innovation (Hofmokl, 2010). The public sector is one of the major producers and holders 

of information, which ranges, e.g., from maps to companies registers (Aichholzer & Burkert, 2004). But 

also the diffusion of open government data kept a fast pace in recent years (Vetrò et al., 2016). As 

Ortmann et al. (2011) state: “disaster management has seen a revolution in data collection. Local victims 

as well as people all over the world collect observations and make them available on the web.” The open 

availability and usage of data also create new possibilities for finding solutions to aid prioritisation 

problems in specific. As more governments disseminate national datasets freely accessible and 

modifiable on the web, humanitarian aid organization gain more possibilities to use them for identifying 

vulnerable areas and communities. The use of open data by the humanitarian sector is highlighted by 

UN OCHA’s initiative to establish the Humanitarian Data Exchange (HDX) online platform. The goal of 

this data sharing platform is to make humanitarian data easy to find and use for analysis. Humanitarian 

data is defined as 1) data about the context in which a humanitarian crisis is occurring, 2) data about 

the people affected by a crisis and their needs and 3) data about the response by agencies and people 

seeking to help those who need assistance (HDX, 2016). Since credible information is often lacking in 

the first days after a sudden onset disaster, initial assessments can instead make use of preliminary 

available open data and minimize the amount of post-event data needed. However, users should be 

cautious since especially in development regions governmental open data sets can come with their own 

limitations, such as being outdated or lacking metadata.  

 

3.2 Empirical and Analytical Approaches 

In earthquake damage modelling the functions between shaking intensity and damage are generally 

constructed either based on an empirical or an analytical approach (King & Rojahn 1996; Jaiswal et al. 

2009; Lang 2012; Calvi et al. 2006). Though the analytical approach is more upcoming and becoming 

more advanced, it is argued that it is less suitable for development regions. Building inventories or 

systematic analysis of their vulnerabilities are typically lacking in such regions, making analytical tools 

inadequate (Jaiswal & Wald 2008). Regarding an empirical approach on the other hand, Jaiswal et al. 

(2009) argue that for regions which have experienced numerous earthquakes with high fatalities 

historically, typically developing countries with dense populations living in vulnerable structures, 



 

enough data exists to calibrate from the historical record alone. They explain that hybrid and analytical 

analysis require a series of parameters (for example, knowledge of regional building inventory, 

structural vulnerability of each building type, occupancy at the time of earthquake, fatality rate given 

structural damage) which are often unavailable in certain countries or difficult to obtain in cases where 

it is available, due to inconsistent and poorly characterized historical earthquake casualty data. The 

empirical approach, on the other hand, is generally regression based, can effectively utilize the available 

quality and quantity of historical earthquake casualty data and depends on very few free parameters of 

loss models (Jaiswal et al., 2009). Also, currently most priority indices combine indicators using weights 

and aggregations decided by analysts. Often the rationales for these are weak. In such situations, a data-

driven methodology may be preferable (Benini, 2015). An example of a system using an empirical 

approach is PAGER. “PAGER rapidly assesses earthquake impacts by comparing the population exposed 

to each level of shaking intensity with models of economic and fatality losses based on past earthquakes 

in each country or region of the world (US Geological Survey n.d.)”. Within 30 minutes after impact it 

openly distributes a ShakeMap including the predicted number of people and houses exposed and a 

range of possible fatalities and economic losses.  

 

3.3 Earthquake Rapid Response Systems 
The rapid assessment of spatial distribution and severity of human and structural losses (damage to 

buildings) after an earthquake can help improve the reduction of human suffering (Erdik et al., 2011). 

This information comes from rapid response systems. An increasing amount of research has been done 

about mathematical models and systems which help in the decision aid processes developed when 

trying to respond to the consequences of a disaster (Ortuño et al., 2013).  Earthquake impact models 

come in all forms and sizes. Some models are very detailed simulations that try to predict damage on 

the building level. Others are very generic, like the USGS’s PAGER predicting for each significant 

earthquake on the globe the total amount of economic damage and the human losses. With regard to 

the scope of rapid spatial prioritization of aid resources an analysis on building level is not desired. 

Currently operating near-real-time loss estimation tools can be classified under two main categories: 

global and local systems. Methodologies of global rapid loss estimations are relevant for this study since 

post-earthquake humanitarian needs logically correlate with structural damages and human losses. 

These systems generally include several features. For example, Benini and Chataigner (2014) formulate 

post-disaster needs in a study about typhoon priority indices as 

Needs = k * Magnitude * Intensity * f(Pre-existing conditions) 

Where k is an unknown constant expressing proportionality, Magnitude expresses the number of 

affected people, Intensity is the fraction of totally destroyed houses and Pre-existing conditions indicate 

the poverty rate. Another example comes from the Office for the Coordination of Humanitarian Affairs’ 

(OCHA) INFORM Severity Index for Nepal. It used a similar equation to quantify the disaster’s impact on 

the population for prioritisation: 

Severity = Hazard * Exposure * Vulnerability 

Hazard is measured by earthquake intensity as derived from USGS ShakeMaps, Exposure indicates the 

total population in a VDC and Vulnerability resembles a normalized weight of a housing quality measure 

(wall and roof type) and a poverty measure (Human Poverty Index) (OCHA 2015a). Both equations 

include earthquake intensity and social and physical vulnerability related factors. Nearly all earthquake 



 

impact or severity models combine the three factors of hazard, exposure and vulnerability. The 

predictor categories for this study are defined as: 

Hazard 

Bird and Bommer (2004) have explained that 88% of damage due to earthquakes is caused by ground 

shaking rather than secondary hazard. Therefore, one very important part of loss estimation 

methodologies is the quantification of ground motions. Many rapid response systems use USGS’s 

ShakeMaps for post-earthquake response, public and scientific information and loss assessments (Erdik 

et al., 2011). ShakeMap uses instrumental recordings of ground motions, kriging techniques, and 

empirical ground motion functions to generate an approximately continuous representation of shaking 

intensity shortly (minutes) after the occurrence of an earthquake (Wald et al., 2008). The ground motion 

distributions that are generated via ShakeMap can be used as input for casualty and damage assessment 

routines for rapid earthquake loss estimation (Erdik et al., 2011). 

 

Exposure 

Exposure refers to the inventory of elements in an area in which hazard events may occur (Cardona et 

al., 2012). Hence, if population and economic resources were not exposed to potentially dangerous 

settings, no problem of disaster risk would exist. While the literature and common usage often 

mistakenly conflate exposure and vulnerability, they are distinct. Exposure is a necessary, but not 

sufficient, determinant of risk. It is possible to be exposed but not vulnerable (for example by living in a 

floodplain but having sufficient means to modify building structure and behaviour to mitigate potential 

loss). However, to be vulnerable to an extreme event, it is necessary to also be exposed. 

 

Physical vulnerability 

Physical vulnerability to earthquakes can be induced either by hazards caused directly by the building 

environment or indirectly by secondary hazards. Erdik (2011) argues that for the assessment of direct 

physical damages, general building stock inventory data and the related vulnerability relationships are 

needed. However, not only for building loss estimations, but also for human loss and aid needs 

estimations the spatial distribution and location of buildings is an important factor to take into account. 

Not only is building destruction the main reason for people to get injured or parish during an 

earthquake, but also is loss of shelter an important reason to be in need of aid in the event’s aftermath. 

Unfortunately, only a limited number of countries and cities have well developed building inventories 

(Erdik, 2011). The ELER (Earthquake Loss Estimation Routine) software system solves this issue by using 

a proxy procedure that relies land use cover and population distributions to create an aggregated full 

country covering raster with continuous values indicating the amount of buildings per cell (Hancilar et 

al. 2010). Also, initiatives like OpenStreetMap distribute openly available crowd-produced datasets of 

buildings and roads.  

 

Secondary hazards related to earthquakes are landslides, tsunamis, seiches, floods and fires. Sometimes 

landslides are seen as a primary hazard, together with surface rupture, ground motion and liquefaction, 

but in this study the will be labelled as secondary hazards. Modelling susceptibility to secondary hazards 

is a complicated task in itself, as these natural phenomena are generally unpredictable and depend on 

many different environmental factors. A solution can be to use a proxy indicator that can be considered 

as a main inducer of secondary hazard.  



 

Social Economical Vulnerability 

Socio-economic status plays an important role in increase of social vulnerability related to hazards. It is 

difficult for the people with low socio-economic status to restore their living order, which was disrupted 

due to the disaster (Yucel & Arun, 2012). Especially in the humanitarian sector it is important to also 

take social and economic vulnerability into account, since these influence the personal recovery 

capacities after initial impact of a natural disaster. For example, in the severity index that OCHA 

produced after the Gorkha earthquake socioeconomic vulnerability was weighted at 20%, against 40% 

assigned to earthquake impact (human and structural damages) and 40% to physical vulnerability 

(landslide hazard and road accessibility). Socioeconomic vulnerability was constructed of: poverty 

(30%); caste, ethnicity and gender inequality (30%); youth, elderly and disabled people (20%); and 

labour capacity represented by international migration (20%) (OCHA 2015a).   

 

Learning Models 

Multiple existing systems are based on learning from past events. The PAGER system produces 

information on earthquake location, magnitude, depth, number of people exposed to varying levels of 

shaking intensity and a region’s fragility. A PAGER feature of special interest is their estimate of the total 

number of fatalities based on empirical correlations between casualties and intensity. Another example 

is the Japanese HERAS (Hazards Estimation and Restoration Aid System) system. This system estimates 

damage to railways based on damage experiences of past earthquakes (Yamazaki & Meguro, 1998). 

Another example is a severity index distributed by the INFORM working group two days after the event 

in Nepal. Their model used equal weighing of hazard (USGS ShakeMap), exposure (a population overlay) 

and vulnerability. The latter was composed of housing vulnerability (50%) and poverty (50%). The 

Human Poverty Index (HPI) was used to represent poverty. Data aggregated to different administrative 

levels (levels 3 and 4) were combined in this analysis (INFORM, 2015) 

 

Uncertainties 

In most modelling, uncertainties are present since approximations and simplifications of the “real 

world” are necessary in order to perform a comprehensive analysis. In earthquake loss estimation 

models uncertainties can be derived either from the seismic hazard analysis (is the shaking accurately 

represented) or from the vulnerability relationships (do wooden structures indeed have less seismic 

capacity). Input datasets can be the subject to noise, outliers and errors (Hammer & Villmann, 2007). 

For example, needs assessments can contain documentation errors and national census datasets could 

be incomplete or outdated. Uncertainties can also be inherent in pre-processed datasets. For example, 

there exits considerable amount of epistemic uncertainty and aleatory variability in ShakeMaps, 

depending on the proximity of a ground motion observation location and the estimation of ground 

motions from the GMPE (Wald et al., 2008). It is possible to examine the effect of cumulative 

uncertainties in loss estimates using discrete event simulation (or Monte-Carlo) techniques if the hazard 

and probability distribution of each of the constituent relationships are known. The general finding of 

studies on uncertainties in earthquake loss estimation is that uncertainties are large and at least equal 

to uncertainties in hazard analyses (Stafford et al. 2007).  

 

 



 

3.4 Needs Assessments and the Value of Priority Index Models 
Often the field of humanitarian logistics has been approached in a similar way as business supply-

demand chains. Key differences are an unpredictable demand, a short lead time and suddenness of 

demand for large amounts of different products and services, a lack of initial resources and multiple 

decision makers who can be difficult to identify (Ortuño et al., 2013). In case of a natural disaster these 

decision makers are informed by needs assessments, relating to four main questions: 1) whether to 

intervene, 2) the nature and scale of an intervention, 3) prioritisation and allocation of resources, and 

4) programme design and planning (Darcy & Hofmann 2003). The answer to all of these questions starts 

with an assessment of the spatial distribution of the disaster’s impact. Since assessments are often not 

available the first days, an estimation of the disasters’ impact, such as produced by a PIM, is thus the 

starting point for planning intervention. Ebener et al. (2014) identify that the “need for accurate and 

up-to-date data to support disaster risk reduction and emergency management has long been 

recognized”. Additionally, various authors specify that the information needs to be accurate, 

appropriate, timely and valid (ACAPS 2016a; Comes et al. 2015; Homberg van den et al. 2016). 

 

Priority Index Modelling 

Such a rapid needs assessment that helps aid distributers to prioritize can be performed by means of a 

Priority Index Model (PIM). Priority indices have grown popular for identifying communities most 

affected by disasters (Benini, 2015). A PIM geographically disaggregates the affected area and indicates 

for each entity the degree to which it is in need of aid. This aid can be any type of humanitarian aid (in 

total IASC distinguishes between eleven aid-clusters ranging from shelter to nutrition to health (IASC 

2012a). Such an index has a position to act as a stopgap before the more detailed assessments are 

available (Johnson, 2015). The amount of information in an output should be both limited and credible. 

 
The contemporary data environment is characterized by overwhelming amounts of openly available 

data on a wide range of topics. The number of different ways and applications to make sense out of 

them are increasing. This creates new possibilities for finding solutions to accelerate aid prioritisation 

problems. As explained before, since credible information is often lacking in the first days after a sudden 

onset disaster, initial assessments can instead make use of preliminary available open data and minimize 

the amount of post-event data needed. This is where PIM’s can be part of the solution, since they 

require only a very limited amount of post-event data. For almost any type of sudden onset natural 

disasters there are institutions active that rapidly produce datasets on geophysical characteristics of the 

hazard itself after its occurrence. By collecting and organizing the right set of pre-crisis datasets a PIM 

can provide decision support for emergency response in an information poor situation.  

Within the Red Cross societies some work concerning priority indices has been performed in the past. 

In a blogpost by Andrej Verity (2014) he suggested the combination of pre-crisis datasets and post-event 

contextual data to show the impact of the disaster. In response to this, Simon Johnson, GIS expert at 

the British Red Cross, created try-outs of such a model for Cyclone Pam and Typhoon Maysak (Johnson, 

2015). Model input included data on population, wind speed and poverty levels. Poverty was included 

since he observed in the field himself that “there was a big focus on not just affected population totals, 

but also on the areas with high poverty as they were the least likely to self-recover” (Johnson, 2015). 

However, he explains that although the generated output can be useful, the models were made on 

intuition and that improvements can be made by comparing output against formal ground assessments 

and by fitting the models mathematically to determine which parameters matter “to see if it is possible 



 

to develop consistency of parameters between countries and if priority indices should be pursued at 

all” (Johnson, 2015). Also within the Netherlands Red Cross a priority index has been developed for 

typhoons, trained on data from five past typhoons in the Philippines. The most important conclusions 

drawn from the development of this model were that the importance of poverty data seems to be 

overestimated in many other severity indices and that it is essential to use features that are proportional 

to the population. Otherwise population is by far the most important feature in any model (see: 

http://510.global, 2016).  

 

3.5 Machine Learning for Damage Assessments 
The application of machine learning techniques for (natural) disaster damage assessments is relatively 

new. Not many studies on the development of such applications have been published.  

 

As Breiman (2001) explains, there are two cultures in the use of statistical modelling to reach 

conclusions from data: “One assumes that the data are generated by a given stochastic data model. The 

other uses algorithmic models and treats the data mechanism as unknown”. The latter is also known as 

machine learning. Machine learning explores the study and construction of algorithms that can learn 

from and make predictions on data. Such algorithms overcome the approach of strictly static program 

instructions by making data-driven predictions or decisions. Breiman (2001) argues that statisticians rely 

too heavily on data modelling, and that machine learning techniques are making progress by instead 

relying on the predictive accuracy of models. Also for complex prediction problems data models are 

often not sufficient.  

A distinction can be made between supervised and unsupervised learning. For this study supervised 

learning algorithms will be applied. In supervised machine learning the input data is called training data 

and has a known label or result (in this case the quantified aid neediness measure). Examples of 

algorithms that are suitable for multivariate regression problems as in this study are Linear Regression, 

Decision Forest, Neural Network and Random Forest (Caruana & Niculescu-Mizil, 2006). Accuracy, 

training time and linearity are often the three considerations when choosing an algorithm (Rohrer, 

2016). Training time will most likely not be an issue since the dataset will be relatively small. Whether 

or not to use an algorithm that uses linearity depends on the data trends observed from scatterplots. 

Multiple suitable algorithms will be applied to learn from the data and the one with the highest 

predictive accuracy will be selected for the model. 

Since algorithmic modelling is a relatively fast way to make sense out of data, multiple models can be 

iterated easily based on different parameter settings. This enables the methodology to be extended and 

applied for other countries and other types of disasters more easily. When new event-specific data and 

damage assessment are collected and structured, the algorithm can learn from these and improve itself. 

The model maker will not have to deal with studying and defining the optimal relationships. On the 

downside, he or she will not gain as much insights in how variables relate to each other or whether they 

influence the output positively or negatively.  

The typhoon priority index that was developed within the Red Cross (see http://510.global/philippines-

typhoon-haima-priority-index/) made use of a random forest regression. 13 explaining variables are part 

of the model. Four of them are event-specific (distance to typhoon path, typhoon position, wind speed 

and rainfall). Geographical variables were ruggedness, average slope gradient, coastline-inland line 

http://510.global/philippines-typhoon-haima-priority-index/
http://510.global/philippines-typhoon-haima-priority-index/


 

ratio, elevation and area. Finally, wall material, roof material population and poverty were part of it. The 

response variable was a governmental count of the amount of partially and fully destroyed houses per 

municipality. Overall the model explains 88% of all variance in housing damage. The R-squared is 0.58 

and the mean damage error is 1,290 houses per municipality. 

 

 
Fig 3.1 – Output Priority Index Typhoon Haima (510, 2016). 

It should be noted that the model made much better predictions for fully damaged houses than for 

partially damaged houses. This might be caused by the fact that threshold for labelling a building as 

partially damaged differs between municipalities, as each of them did an individual count (510, 2016). 

Besides the activities within the Red Cross regarding priority indices, an example of the application of 

machine learning techniques for disaster damage forecasting is a study by Kohara & Hasegawa (2009). 

They applied Self-Organizing Maps, multiple regression and decision trees to forecast typhoon damage 

in Japan. 111 data records of typhoons from 1981 up to 1995 were used to train the model and 86 for 

testing. Damage data included fatalities, injured, destroyed houses and flooded houses. Event-specific 

data included month of occurrence, latitude and longitude, atmospheric pressure, maximum wind 

speed and precipitation. In the data records there was relatively much small scale damage (>80%), 

therefore the model made very accurate predictions for small scale damage but was less accurate for 

large scale damage. Therefore they applied the selective-learning-rate approach: the learning rate for 

training data corresponding to small changes is reduced. Their study focussed on quantitative damage 

predictions and thus did not include any social vulnerability parameters related to aid needs or recovery.  

 

 

 



 

4 Methodology 
 

This chapter opens by presenting an overview of the methodology by visualizing all research steps in a 

methodological model. The subsequent paragraphs discuss the approaches for providing answers to 

each individual sub research question. 

 

4.1 Methodological Model  
Broadly speaking the research is completed by performing several consecutive tasks, providing answers 

to the sub research questions and ultimately making it possible to answer the main research question. 

The conceptual model below shows all steps. The blue circles indicate the according research questions. 

First of all, data for the predicted and candidate predictor variables are collected (Q1 and Q2). Where 

necessary data processing and transformation takes place to extract the desired features from these 

data. All variable data will be collected in a structured feature matrix. Hereafter the LM and RF models 

are trained on the data in the matrix, resulting in several models that can be evaluated by comparing 

the predicted output to the actually measured output (Q3). Based on these evaluations the process can 

loop back to both model training (adjusting parameter settings) and feature extraction (changing input 

variables). During this process the comparison of the two different raster generalization techniques will 

also take place (Q4). After going through the training process again two improved models are created. 

These will be validated by comparing them to two different independent datasets (Q5). These validation 

results will in turn form the main input to compare the drawback and advantages of both models (Q6).  

Figure 4.1: Visualization of applied research methodology. 

 

4.2 Quantifying Aid Neediness 
 

 

 

The first task is to define the response variable for the model. As explained in the Introduction a proxy 

indicator has to be used due to the absence of an objective and quantitative measure for aid neediness 

(see Challenge #1).  

An extensive data search will be performed, mainly using information channels of the Red Cross 

Societies and data portals for online sharing of data within the humanitarian sector. After assessing the 

Q1: What impact assessment data is available for quantifying aid neediness following the Gorkha 

earthquake and which fits the study’s objectives best? 

 



 

metadata and suitability of multiple datasets one of them will be selected as the final predicted variable. 

Some of the most important selection criteria are the level of aggregation, number of observations, 

commonness of the measure used, trustworthiness, temporal coverage, spatial coverage and 

completeness. 

After these possible datasets are collected, their suitability to represent multisector aid neediness will 

be discussed with several aid workers experienced with the coordination of emergency relief. The main 

goals of these discussions is to find out what indicator(s), in case of an earthquake, would help aid 

workers in the field best to identify priority areas in the first few days after initial impact. 

 

4.3 Defining Candidate Variables  
 

 

 

The second research question relates to the definition of candidate predictor variables. They are being 

referred to as candidates since they can be eliminated throughout the process of model training. The 

assumption is made that all predictors are available for inclusion or exclusion from the model. From the 

review of existing earthquake impact models as presented in Section 3.3 Earthquake Rapid Response 

Systems it was concluded that candidate variables of four different categories should be included: 

hazard related variables, exposure related variables and physical and social vulnerability related 

variables. Sub question 2 is answered by determining requirements for variables in each category, 

collecting data and defining relevant variables in each of the four categories.   

However, the collected set of explaining variables does not have to be perfect, since automated variable 

selection procedures offer the opportunity to eliminate variables with insufficient influence on the 

predicted variable. This way no fixed assumptions about what social or physical vulnerability exactly 

entails have to be made. Apart from the previously found predictive value of certain indicators, the data 

collected maybe depends even more on availability, attainability, accuracy and level of geographical 

aggregation. All relevant data will be p-coded (p-codes are unique geographic identification codes 

assigned to administrative areas worldwide by OCHA) and organized by the same level of aggregation 

as that of the predicted variable. 

 

4.4 Model Fitting 

 

 
 

 

The aim of the third research questions is to find the best fitting empirical relationships for both models 

between the previously defined response variable and candidate predictor variables. Before the actual 

model training a few preparations take place.  

 

Q2: What variables, derived from openly available data, are candidate predictors of the defined 

response variable? 

Q3: Based on a multivariate linear regression model and a random forest regression model, which 

candidate predictors can together make the best possible prediction of the defined response 

variable, and what is their (relative) importance? 

 



 

Data Exploration 

First an exploration of all the data takes place. Data exploration consists of three subsequent tasks. First 

the complete data matrix is checked for missing values. In case values are missing first an explanation is 

sought, after which will be decided either to leave the corresponding observation out of analysis or to 

fill in the (assumedly) correct value. Secondly, it is checked whether the data are normally distributed. 

If the frequency distributions of the variables indicate skewness appropriate data transformation such 

as a logarithmic transformation will be considered. The third issue to look at is collinearity among 

covariates. By studying pairwise scatterplots and interpreting absolute correlation coefficients 

multicollinearity between predictor variables is studied. Appropriate ways to deal with covariance will 

be discussed and reported in the according Results section. 

Cross Validation 

After all assumptions for the model training are sufficiently met the next step is to prepare for cross 

validation by splitting up the data in a training set and a test set. This enables the possibility to check 

afterwards whether the model created is not over-fitted to the training data and can also make an 

accurate prediction for a set of observations that was not known to it during training. The size of these 

sets depends on the size of the complete dataset. The sets will be assembled randomly and stay the 

same throughout the whole modelling process.  

As explained before, for the detection of empirical relationships in the data two different algorithms will 

be modelled: a multivariate linear regression model and a random forest regression model. To find the 

best fitting models both algorithms have different aspects to pay attention to.  

Linear Regression Model 

The first model to be made is a multivariate linear regression model (LM), which is a logical decision 

given the multivariate regression problem. To find the best fitting LM a stepwise variable selection is 

applied, meaning that the choice of predictive variables is carried out by an automatic procedure, in this 

case the ‘regression subsets selection’ function. This function performs an exhaustive search for the 

best subsets of predictor variables for predicting the response variable. It produces sets of candidate 

models of different sizes, leaving room for own interpretation. This method prevents for unnecessarily 

holding on to no longer significant variables or permanently eliminating variables which later on can 

become relevant again, both of which can occur when applying forward selection or backward 

elimination techniques. Stepwise regression techniques are sometimes criticized for creating over-

simplifications of the data, but this will be taken into account by performing cross validation on the 

independent test data set. The regsubsets function returns a table of models showing which variables 

are in each model, ordered by a specified selection statistic (Lumley, 2017). The selection criteria for 

the final LM is the adjusted R-squared (R2
adj), which indicates how much of the variance in the response 

variable is explained by the model and is adjusted to the number of predictors in the model. During the 

model training, usage of this measures prevents for overfitting to the training data. After a final model 

has been selected, the normal R-squared will be used.  

Several rounds of training are carried out. This is mostly to see how the model’s performance is 

influenced by defining different types of candidate variables, which cannot be included simultaneously 

due to collinearity. This provides insights into how best to extract features from geographical input data 

in order to make the best possible predictions of post-earthquake aid neediness. The same manner also 

enables to independently compare different spatial aggregation techniques, as is the subject of research 

question 4, explained in the next section. Once the model with the best R2
adj is selected the coefficients 



 

can be interpreted, which will provide insights into the influence of individual variables on the aid 

neediness variable.   

After the final LM is selected, validity of the model will be assessed by testing for multiple model 

assumptions. These assumptions are linearity of residuals, heteroscedasticity of residuals and normality 

of residuals. 

Random Forest Model 

As the name suggests, the random forest model (RF) consists of multiple (decision) trees. Decision trees 

predict the outcome of the response variable by splitting up the input variables at relevant points. A RF 

classifier uses a number of decision trees in order to improve the prediction rate. It makes corrections 

with each model iteration during the training and averages the outputs of multiple decision trees. In 

standard trees, each node is split using the best split among all variables. In a RF, each node is split using 

the best among a subset of predictors randomly chosen at that node (Liaw & Wiener, 2002). Therefore, 

the RF model can be viewed as a machine learning version of a linear regression model. In RStudio the 

RF function model returns the number of trees, the number of variables tried at each split, the mean of 

squared residuals and the percentage of variance explained. Besides this it does not give much insight 

into the relationships defined. As with the fitting of the linear regression model, also here several 

training rounds take place, allowing to independently compare the model’s performance with a 

different selection of predictor variables to choose from and with different parameter settings. The 

selection criteria for the best fitting model is R2. 

 

During the fitting of both models only in-sample validation takes place, meaning that the models fitting 

best to the training data are being selected, leaving validation with the test data set out of consideration 

for now. The in-sample validation is done by means of comparing and interpreting the R2 scores of the 

models and checking for randomly distributed residuals by means of scatterplots.  

 

4.5 Comparing Aggregation Techniques 
 

 

 

 

As explained under Challenge #4 in the Introduction, generalizing a continuous raster layer to a single 

value for a larger entity per definition causes a loss of information, because the resolution of the layer 

increases. By finding an answer to this research question the ultimate aim is to gain insight and form 

recommendations about the comparative advantage of using one raster generalization technique over 

another. As explained in Section 4.1 Conceptual Model the process takes place during the fitting of both 

models to the training data. Two techniques for aggregation to VDC or district level will be compared, 

both performed with QGIS software. This is performed only for continuous raster layers for which it can 

be argued that taking into account only built-up areas could be more sensible, such as the earthquake’s 

shaking intensity. Also, because the model strives to produce an output within 6 hours this will not be 

applied to event-specific data which will be available only after the event, as it takes quite some 

computation time. 

Q4: For predictor variables that are derived from continuous raster data; how is their predictive 

value influenced by adjusting their spatial extent to populated areas rather than complete zonal 

coverage? 



 

Zonal Statistics 

This generalization method is relatively simple, in the sense that is requires only few computation steps. 

Zonal Statistics as a basic GIS computation whereby the target layer is a continuous raster layer and a 

vector layer with lines or polygons defines the zones to which statistical values should be assigned. To 

calculate a mean elevation value for one geographical entity for example, the slope values of all cells 

intersecting with this entity are added up and divided by the total number of intersecting cells. 

Depending on the interest this can give a false perception, as the average shaking intensity in an entity 

can be relatively high, while the average intensity at the most populated areas in this entity can be low.  

 

Clipping to built-up areas 

By adding several computation steps the information loss can be reduced. The extent of the continuous 

raster data should cover only populated areas, as these are the target of emergency relief. Spatial 

population distribution is represented by building locations. As no official data on built-up areas of Nepal 

is openly available, an alternative method for defining these areas is to derive a building dataset from 

OpenStreetMap (OSM). Fortunately, from April 25 to June 8 2015, a significant crowdsourcing effort of 

the OSM community with more than 7,500 contributors from around the world supported the logistic 

of the Nepal government, UN Agencies and International organizations responding the Nepal 

Earthquake human relief (wiki.openstreetmap.org, 2015). These efforts were coordinated by the 

Humanitarian OSM Team (HOT). Currently, more than 1.1 million building outlines are mapped in the 

16 most affected districts. First of all, a distinction can be made between higher and lower densities of 

populations. Via a Kernel Density operation a raster layer representing the density of points around each 

cell is produced. The next step is to clip the raster layer to built-up areas. By drawing 50 meter buffers 

around these buildings built-up areas can be defined (buffers are drawn around building centroids 

instead of polygons due to processing limitations) (Figure 4.3).  

 

 
Figure 4.2: 50 meter buffer drawn around OSM building outlines. 

 

Hereafter, the cell values of the input raster (e.g. shaking intensity) are multiplied by the intersecting 

cell values of the building density raster. The resulting output is clipped to the extent of the buffer area 

(Figure 4.3). To retrieve single values for each geographic entity from this layer the same steps as 

described above for Zonal Statistics are repeated. Seven VDCs did not have a building mapped within 

them. For these VDCs the slope values based on the first generalization method were used. 



 

 

 
Figure 4.3: 50 meter buffer around OSM building outlines for the complete study area (source buildings data: OSM, 2017). 

 

The aggregated values will be included in the data matrix. To compare them independently they will be 

included as candidate predictor separately. Both models are trained once on a matrix including the first 

variable, and once on a matrix including the second. The relative importance of both variables in the 

resulting models are compared, allowing to draw conclusions on which would be better to use.  

 

4.6 Model Validation 
 

 

So far performance of the models was judged only by interpreting (adjusted) R2 values to assess how 

well they “fit” the data they were trained on. However, it is also important to see how well the model 

can make predictions for data other than the data it was trained on. This is referred to as out-of-sample 

validation. 

Out-of-sample validation 

The selected models will make predictions for the test dataset that was set apart before the model 

training. Both the selected LM and RF model will be run on the test cases. Their performance in this 

validation test is again judged by the R2 values, a scatterplot and the root mean squared error (RMSE) 

as a measure for the prediction error. If the models perform much lower on the test set this indicates 

overfitting. This can be overcome by simplifying the model by eliminating the predictor variables with 

the lowest significance. Also, maps of both the measured and predicted values are compared in order 

to draw conclusions about the spatial characteristics of the predictive accuracy. 

 

Q5: How do the models perform regarding the prediction of an independent dataset?  

 



 

4.7 Model Comparison 
 

 

 

To make sense out of the insights gained during previous research steps and to be able to answer the 

sixth research question the LM and RF model are compared to each other. First of all, their predictive 

performance is compared by summarizing the coefficients of determination and average prediction 

errors. Additionally, maps displaying the residuals of each model output are compared. Focus is on the 

correct identification of the highest priority areas. Secondly, the comparison of the models general 

usability is mostly descriptive and focusses on their drawbacks and opportunities when the PIM is scaled 

up to a global level. A distinction is made here between admin-users, those users that will work on 

further development of the model and produce model output, and end-users, being humanitarian aid 

field workers with a role in decision making about aid distribution. Especially for this last group of users, 

intuitiveness of model output is an important aspects of usability.   

Q6: How do both models compare to each other in terms of predictive performance and general 

usability? 

 



 

5 Results 
 

In this chapter the results and insights of the previously presented methodological steps are reported. 

All sub research questions will be answered consecutively in order to draw conclusions and provide 

recommendations in the final chapters.  

 

5.1 Defining a Response Variable 
 

 

In the weeks after the Gorkha earthquake various organisations and institutions have performed 

multiple ways to assess the impact on citizens and their environment. Most assessments are based on 

surveys, but other examples of assessment methods are satellite imagery interpretation (see 

UNITAR/UNOSAT, 2015) and large scale mobile phone tracking (see Wilson et al., 2016). Open data 

availability, suitability and usability for model training are the main criteria for the selection of a suitable 

dataset to indicate the level of aid neediness. 

As explained, an extensive search via mainly Red Cross information channels and online humanitarian 

data sharing portals (the online Humanitarian Data Exchange portal (HDX) in particular) was performed. 

All datasets that could possibly indicate aid neediness were kept track of in a structured table including 

metadata on each dataset. These included the number of ‘people in need’ (OSOCC Assessment Cell, 

2015), the origin of people in shelter camps (IOM, 2015), structural damage identified via satellite 

imagery (Yun et al., 2015), number of people displaced and affected (Nepalese Red Cross Society, 2015), 

the number of houses fully and partially damaged (Nepalese Red Cross Society, 2015a; OCHA Nepal, 

2015) activity logs of all humanitarian organizations working on housing reconstruction (Housing 

Recovery and Reconstruction Platform, 2016), above normal population inflow derived from phone 

tracking data (Wilson et al., 2016) and relief items distributed (Ministry of Home Affairs Nepal, 2015).  

From discussions with experienced humanitarian aid field workers the main conclusion was that from 

all collected datasets the ones representing structural damages to residential buildings would be the 

best aid neediness proxy indicators. The main reason for this was mentioned in multiple conversations, 

for example by M. Becks, Head Resilience Advisory Unit at The Netherlands Red Cross (2015): “Damage 

to houses is important for many aid sectors. Of course for the Shelter cluster, but therefore also for the 

WASH (Water, Sanitation and Hygiene) cluster, and therefore the Health cluster. And depending on how 

and where food is stored also for the Food Security cluster”. Logically, structural damages should then 

preferably concern residential buildings only. Two of the collected datasets reported structural 

damaged to residential buildings. These datasets and their characteristics are discussed in the two 

Sections below, based on which a final selection can be made. 

Other datasets representing aid neediness rather well (such as the number of people in need), were 

discarded mostly due to a limited number of observations, subjectivity of the measure(s) used and 

uncommonness of such an assessment. Training a model based on measurements that are often 

reported after an earthquake in any place on earth keeps more options open for future training and 

improvement of the model.  

Q1: What impact assessment data is available for quantifying aid neediness following the Gorkha 

earthquake and which fits the study’s objectives best? 



 

5.1.1. Dataset A: Structural Damage on District Level 
The first dataset was compiled by OCHA from reports of the Nepalese Ministry of Home Affairs and the 

Nepali Police. It was derived from the online HDX platform (see: OCHA Nepal, 2015). It distinguishes 

between four different types of impact indicators: ‘deaths’, ‘injuries’, ‘governmental buildings 

damaged’, ‘governmental buildings partially damaged’, ‘public buildings damaged’ and ‘public buildings 

partially damaged’ (‘public buildings’ are residential buildings and ‘public/governmental buildings 

damaged’ means fully damaged). The indicator of interest here is ‘public buildings damaged’. This is 

expected to be a good proxy indicator for multisector aid neediness, as it indicates how many people 

have lost their shelter and thereby possibly their sanitary facilities and food supplies.  

a)  

b)  

Figure 5.1a-b: Number of fully (a) and partially (b) damaged public buildings in Nepal 2015 (data source: OCHA Nepal, 2015). 

The numbers are defined for each of the 75 districts in Nepal. The dataset includes 22 separate 

measurement dates between the 29th of April and the 5th of June 2015. When divided by the total 

number of households as defined in the National Population Census of 2011 there is one district 

(Dolakha) exceeding 100%, with 107% of all houses fully damaged. 



 

5.1.2 Dataset B: Structural Damage on VDC Level 
The second likely suitable dataset is composed by the Nepalese Red Cross (see Nepalese Red Cross 

Society, 2015a). This data was gathered during an Initial Rapid Assessment (IRA) that defines the number 

of deaths, injured, affected households, affected males and females, displaced households, displaced 

people, completely damaged houses and partially damaged houses. All were reported in the first week 

after the main shock. Every chapter office had sent out local volunteers to fill in templates (see Appendix 

I – IRA Assessment Template), which were sent back to the Red Cross headquarters in Kathmandu. 

Volunteers derived the numbers either from estimating, counting or talking to local people (Knight, 

2016). IRA’s are a common way of assessing needs in the humanitarian sector. 

In total there are numbers reported for 1,017 VDCs located in the 25 most affected districts. 

Unfortunately, 400 observations in the dataset do not include an identification code like a p-code (see 

Section 4.3) or governmental code, and therefore cannot be located automatically. The p-coding of the 

document was done automatically by the British Red Cross by means of an algorithm searching for 

matching letters. Most likely these missing labels are caused by the fact that administrative borders in 

Nepal are rather dynamic (as explained in Challenge #3). Also some local volunteers had reported 

municipality names instead of VDC names (Knight, 2016). The VDCs for which no p-code was assigned 

are left out of the analysis. The remaining 617 observations are within 16 (heavily) affected districts 

(Figure 5.2a-b).  

 

a)     

 



 

b)  
Figure 5.2a-b: Number of completely damaged houses (a) and partially damaged houses (b)  

(data source: Nepalese Red Cross Society, 2015a). 

To get a better understanding of the relative impact all absolute numbers in the dataset can be 

converted to relative numbers (Figure 5.3) by dividing them by the total number of households as 

reported in the 2011 National Population Census (data on the number of houses is not available).  

 
Figure 5.3: Percentage of completely damaged houses (data sources: Nepalese Red Cross Society, 2015a;  

National Population Census Nepal, 2011). 

It is important to mention that while calculating these relative numbers some abnormalities appeared:  

 For several districts the number of displaced households divided by total number of households 



 

gave exactly the same output as the number of fully destroyed houses divided by the total 

number of households, indicating that somewhere in the data gathering process one measure 

was copied from the other. Nevertheless, it is likely that indeed the number of displaced 

households closely resembled the number of fully destroyed houses in reality.  

 In the district of Dhading all calculations resulted in equal numbers for nearly all VDCs under a 

category: 100% of households affected, 80% of households displaced, 65% of houses 

completely damaged and 15% of houses partially damaged. Therefore it is likely that the 47 

VDCs in this district were not individually assessed. 

 In the district of Sindupalchwok nearly all VDCs (25 out of 28) give an outcome of exactly 100% 

when the number of affected households was divided by the total number of households, again 

indicating that no individual assessment of this measure actually took place.   

 114 of the 612 calculated numbers for the percentage of completely damaged houses reached 

above 100%. The highest resulting number was 720%. However, errors do not necessarily stem 

from the IRA dataset. Other possible sources of uncertainties are that the number of 

households as reported in the census is not a good representation of the number of households 

in reality, since only officially registered households are included in the census. Also the census 

data are four years older than the assessment data. Between 2011 and 2015 the total 

population of Nepal increased with 4.9% (The World Bank, 2017). 

 

Comparing Datasets 

An advantage of the first dataset, reporting damaged houses on a district level, is that the multiple 

measurements over time create the opportunity to validate the model on post-aftershock situation. A 

downside of this dataset is that it reports damages on the relatively coarse district level. As a result there 

are only 14 to 30 observations of real interest. In the end, the model output is more valuable if it can 

correctly estimate variations between the most affected entities.  

With regard to the IRA dataset, the main drawback is the abnormalities such as the many duplicate 

values which could negatively influence the predictive power of a model. Nevertheless, because of the 

higher number of observations and the lower level of aggregation, training of the model on these data 

can give a more information-rich output and better distinguish between different amounts of damage 

in the highly affected areas. The downside of the low administrative level of the data is that it could be 

harder to collect data for predictor variables on the same level, since not much data is reported on this 

level in Nepal. Finally, the fact that commonness of this type of assessment increases possibilities for 

further model training. For these reasons the IRA dataset is judged to suit the study objectives best. It 

is recognized that the selected dataset is far from perfect, nor completely objective, which stresses the 

importance of careful data exploration. However, the challenge in this study is to see how good of a 

prediction can be made based on the best available open data.  

Final Response Variable 

Different response variables concerning damage to residential buildings can be derived from the 

selected dataset. The assessment distinguishes between completely and partially damaged houses. The 

former is expected to be more suitable for model training, as it is generally less subjective as there is no 

agreed notion of when a building is partially damaged. Therefore the number defined under this 

category is very dependent on the observer’s interpretation and hence not that objective. During 

development of the typhoon PIM, mentioned in Section 3.5, it was also observed that partially damaged 

buildings are harder to predict (510,2016). Also in a Post Disaster Needs Assessment by the Nepalese 

National Planning Commission (2015) it is mentioned that there is indeed no uniform criterion for 



 

partially damaged. Also, the number of partially damaged houses in itself does not say a lot. Two 

different entities might both have a relatively low number of partially damaged houses. Despite this, 

one of them may be heavily affected as nearly all houses got completely destroyed (leaving hardly any 

houses as only partially damaged), while in the other entity not a single house got completely destroyed. 

Nonetheless, ‘partially damaged’ houses are indeed also of interest to emergency relief suppliers. Since 

the number of partially damage does hold information a solution could be to enrich the number of 

completely damaged houses with the number of partially damaged houses to create a House Damage 

Factor, hereafter referred to as HDF (Figure 5.4). The applied equation of this HDF is: 

HDF = (0.75 ∙ CDH) + (0.25 ∙ PDH)  

HDF: house damage factor 

CDH: number of completely damaged houses in one administrative area 

PDH: number of partially damaged houses in one administrative area 

 
Because the number of partially damaged houses is an indistinctive measure which does not say much 
about relative impact in itself, as explained above, it is assigned a relatively low weight of 25%.  This 
division remains rather arbitrary, but gave better model prediction results in comparison to 
compositions of ‘0.66 ∙ CDH + 0.33 ∙ PDH’ or ‘1.00 ∙ CDH + 0.25 ∙ PDH’.  
 

 
Figure 5.4: House Damage Factor (own calculation based on data from: Nepalese Red Cross Society, 2015a). 

To summarize, three possible response variables for the model have been selected: the absolute 

number of completely damaged houses per VDC, the percentage of completely damaged houses per 

VDC and the HDF per VDC. Both predictive accuracy and usability will determine which of these three 

variables will be selected for the advised for an Earthquake PIM predicting for any place on earth. 

 

 

 



 

5.2 Candidate Predictor Variables 
 

 

In order to answer the second research question another online search was performed, focussing on 

openly available datasets that could serve to predict damage to residential buildings caused by the 

Gorkha earthquake. As was derived from the analysis of existing models (Section 3.3.), these datasets 

should be part of one of four categories: hazard related variables, exposure related variables, physical 

vulnerability related variables or socio-economical vulnerability related variables.  

5.2.1 Hazard Predictors 
The hazard related predictor variables are meant to represent the intensity of ground motions during 

an earthquake. An important requirement for this variable is that its data becomes openly available 

soon after an initial shock. This enables dissemination of the first PIM output within 24 hours. Other 

requirements are that updates on the data should be available in case of aftershocks in order for the 

model to improve its output and that the resolution is low enough to distinguish between different 

ground motion intensity levels for different VDCs.  

Mostly inspired by other earthquake damage prediction models the search for a suitable hazard related 

predictor quickly turned to the US Geological Survey (USGS) ShakeMaps (see: 

http://earthquake.usgs.gov/earthquakes/shakemap/). These maps provide near-real-time maps of 

ground motion and shaking intensity following significant earthquakes (USGS, 2016b). They are 

especially valuable for this application since they are rapidly available (within +/- 10 minutes) and are 

constantly updated. Shaking intensity is an indicator of impact of ground motion on built environment 

and is expressed as the Macroseismic Intensity (MI), which is usually the Mean Mercalli Intensity  (USGS, 

2017). The MI measures different characteristics of an earthquake than magnitude. Using earthquake 

magnitude to estimate intensity can be misleading because magnitude only measures the energy 

released at the source of the earthquake, which does not say much about the intensity of ground 

shaking at the surface without additional information about environmental factors (Jaiswal et al., 2009).  

In contrast, the MI expresses the effect of the earthquake on the earth’s surface. Rather than focusing 

on the magnitude and epicenter of an earthquake, it displays a range of ground shaking levels at sites 

throughout the region depending on distance from the earthquake, the rock and soil conditions at sites, 

and variations in the propagation of seismic waves from the earthquake due to complexities in the 

structure of the earth's crust (USGS, 2016a). All complex processes including parameters such as peak 

ground acceleration and peak ground velocity are included in an automated assessment producing one 

composite shaking intensity measure, which is widely used across the globe by federal, state, and local 

organizations for post-earthquake response and recovery (USGS, 2016b). ShakeMaps’ in- and output 

datasets are also immediately open and free of charge available in a format ranging from JSON to 

GeoTIFF to SHP. Figure 5.5 shows the ShakeMap of the initial shock of the Gorkha earthquake. As visible, 

the map extent is not adapted to country borders and does not cover the full spatial extent of Nepal. 

Q2: What variables, derived from openly available data, are candidate predictors of the defined 

response variable? 

http://earthquake.usgs.gov/earthquakes/shakemap/


 

 
Figure 5.5: ShakeMap Gorkha earthquake 25 April 2015, WGS84 (data sources: (USGS, 2015)). 

Another feature that stands out from the map is the concentration of higher MI values around seismic 

measurement stations. Station locations are the best indicator of where the map is most accurate: near 

seismic stations the shaking is well constrained by data; far from such stations, the shaking is estimated 

using standard seismological inferences and interpolation (USGS, 2017). The accompanying uncertainty 

map (Figure 5.6) shows a similar pattern, with higher certainty near measurement stations. It appears 

as if higher certainty coincides with higher MI values. Indicating that in areas with lower uncertainty the 

MI values are likelier underestimated than overestimated. Where the ratio is 1.0 (meaning the 

ShakeMap is purely predictive), the map is coloured light grey. Where the ratio is greater than 1.0 

(meaning that the ShakeMap uncertainty is high because of unknown fault geometry), the map shades 

toward dark red, and where the uncertainty is less than 1.0 (because the presence of data decreases 

the uncertainty), the map shades toward dark blue (USGS, 2017). However, the challenge in this study 

is to explore the possibilities of developing a well estimating algorithm based on the best possible event-

specific data that is rapidly available. As with many rapidly available descriptive data on sudden onset 

natural hazards this means dealing with uncertainties stemming from estimations (in this case 

interpolation).  



 

 
Figure 5.6: Uncertainty map Gorkha earthquake 25 April 2015 (source: USGS, 2015). 

All USGS ShakeMap products are provided in WGS84 format. Therefore all other predictor variable data 

will be converted to the same Coordinate Reference System. The USGS ShakeMap is the only hazard 

related candidate predictor that will be included in the model. Based on the raster ShakeMap mean MI 

values can be calculated for each VDC, resulting in the values displayed in Figure 5.7.  

 
Figure 5.7: Mean Macroseismic Intensity per VDC in the study area (data source: USGS, 2015). 

 



 

5.2.2 Exposure Predictors 
Exposure refers to the inventory of elements in an area in which hazard events may occur (Cardona et 

al.). The exposure variable should thus be a quantification of the elements at risk. Since the selected 

response variable is the absolute or relative number of completely damaged houses or factor of this, 

the elements at risk, and thus subject of exposure, are residential buildings. The number of residential 

buildings per VDC would be the preferred exposure variable. However, there are no openly available 

data records of the number of residential buildings, or buildings in general for that matter, on VDC level 

in Nepal. Alternatives that likely have a similar ratio to the amount of residential buildings per VDC are: 

the total population of VDCs derived from the 2011 National Population Census, the number of 

households per VDC from the 2011 census or the number of buildings per VDC as derived from 

OpenStreetMap (OSM).  

Due to the earlier mentioned post-event mapping efforts the OSM building data for the most heavily 

affected areas is very accurate. However, for some of the sixteen districts of the IRA many buildings are 

likely not mapped. A calculation of a buildings-to-people ratio (population / number of OSM buildings) 

for each district showed that while eleven of the districts returned a ratio below 1:5 (which seems 

reasonable), the other five districts had ratios between 1:7 and 1:11, while the average household size 

ranges between 4.0 and 5.1 (Nepal Central Bureau of Statistics, 2012). The OSM data is thus not 

complete enough to form a suitable exposure variable. Another exposure indicator has to be defined 

for now.  

This leaves either the population or number of households as possible exposure variables (Figure 5.8a-

b). Both maps show that middle and Southern parts of the study area are most populated and that the 

Northern VDCs, higher in the Himalaya Mountains, are less populated. Both variables will be included in 

the final predictor variable selection process. The one with the best influence on the predictive accuracy 

of the model will be selected. 

a)  



 

b)  
Figure 5.8a-b: absolute number of people (a) and households (b) in IRA districts Nepal (data source: Nepal Central Bureau of 

Statistics, 2012). 

 

5.2.3 Physical Vulnerability Predictors 
The physical vulnerability of the elements at risk, residential buildings, is viewed in two perspectives. On 

the one hand it is influenced by the building quality of the structures, and on the other hand it is 

influenced by the occurrence of secondary hazards.  

Building Quality 

Regarding the former, the National Population and Housing Census 2011 of Nepal provides information 

on building material by making a distinction between five different types of foundation materials, six 

different types of wall materials and seven types of roof materials. It reports for every VDC the amount 

of households within each category. Because it is likely that separate building material variables will 

correlate, it might be necessary for the LM to construct composite variables. In a Post Disaster Needs 

Assessment by the Nepalese National Planning Commission (2015) a distinction is made between four 

main building types in the affected area based on their vertical and lateral load bearing systems, these 

are: 

1. Low-strength masonry buildings 

2. Cement-mortared masonry buildings 

3. Reinforced concrete frame with refill 

4. Wood and bamboo buildings 

 

For each category a description of construction materials of foundation, walls and roof is provided (see 

Appendix II). In the same report an overview of the earthquake caused damage per building type is 

presented (Figure 5.9).  



 

 
Figure 5.9: Building types and damage caused by Gorkha earthquake (source: Government of Nepal National Planning 

Commission, 2015). 

As the high percentage of damage to low strength masonry buildings already shows, the writers confirm 

that “the seismic capacity of these buildings is very low, limited by the integrity of structural components 

and strength of walls and lack of elements tying the structure together (ring beams at wall or roof level). 

Vertical and horizontal wooden elements are sometimes embedded in walls, providing some level of 

earthquake resistance, but this is very uncommon” (Government of Nepal National Planning 

Commission, 2015).  

Based on the description of construction materials used in low strength masonry buildings four groups 

were created from the 18 separate material groups: 

1. Low strength foundations; including mud bonded and wooden pillar foundations, excluding 

cement bonded and RCC pillar foundations 

2. Low strength walls; including mud bonded, wooden, bamboo and unbaked brick walls, excluding 

cement bonded walls 

3. Low strength roofs; including thatch, tile, wooden and mud roofs, excluding galvanized iron and 

RCC roofs. 

 

These three new features are expressed as the percentage of households with low strength 

foundations/walls/roofs of the total amount of households for which the materials are defined. The 

category ‘other’ was included in the total, while the categories ‘not stated’ and ‘unknown’ were 

excluded from the total, as they cannot be said with certainty to be not one of the material in the low 

strength categories. It is expected that these three categories can give an insight into what part of a 

building (foundation, walls or roof) influence mostly whether or not buildings were completely 

destroyed in the Gorkha event.  



 

a)  

b)  

c)  
Figure 5.10a-c: Percentage of households living in buildings with low strength foundations (a), walls (b) and roofs (c)  

(Data source: Nepal Central Bureau of Statistics, 2012). 
 



 

Secondary hazard susceptibility 

To represent people’s vulnerability to secondary hazard, landslide susceptibility is defined as a candidate 

predictor, mainly because of the relatively high occurrence of landslides in this region and because it 

was reported that landslides caused a lot of damage in the Gorkha earthquake (Government of Nepal 

National Planning Commission, 2015). Landslide susceptibility mapping is a complicated task. Most 

methods are applicable to one specific area only. No methodology for the assessment of worldwide 

earthquake induced landslide susceptibility exists. Therefore a proxy indicator will be included in the 

model training to represent seismic induced landslide susceptibility instead. There are many aspects 

that influence the occurrence and size of a landslide in case of seismic activity (soil type, vegetation 

mass, vegetation root strength, moisture, debris stiffness, see Walker & Shiels, 2013). However, one 

aspect that has a relative high influence and is a prerequisite for a landslide to occur in the first place is 

slope inclination. Slope maps can be derived from Digital Elevation Models (DEMs) which are openly 

available for nearly all regions on earth (for example at srtm.csi.cgiar.org). This availability is important 

having the global scope in mind.   

 

To do a simple verification of using the slope map as a proxy for landslide susceptibility it is compared 

to Shapefiles of landslides that occurred as a result of the Gorkha earthquake (Figure 5.11). These 

landslide locations were mapped based on satellite imagery by staff at Durham University and the British 

Geological Survey (HDX, 2015). 5,578 landslides where mapped in total. The map shows that landslides 

mostly occurred in the middle and Northern part of the district where slope values are higher (often 

more than 30%) than in the Southern part.  

 
Fig 5.11: Slope and landslides triggered by the Gorkha earthquake in Sindupalchwok district  

(DEM data source: (CGIAR Consortium for Spatial Information, 2004), Landslides data source: HDX, 2015). 

A 90 meter resolution DEM raster file is derived from the SRTM (Shuttle Radar Topography Mission) 

Digital Elevation GeoPortal. A pre-defined algorithm is applied to calculate a slope value for each cell by 

assigning it the average rate of change in value from the cell itself to its eight neighbouring cells (ESRI, 

2017). 



 

Since the slope map in first instance is a continuous raster file the issue of raster generalization (see 

Challenge #4) arises. As these considerations are part of research questions four they are dealt with in 

Section 5.4 Raster Generalization.  

5.2.4 Socio-economic Vulnerability Predictors 
As explained in Chapter 3, socio-economical vulnerability of those affected by the earthquake can 

influence their need of humanitarian aid. However, as the selection of a suitable response variable 

resulted in a variable that quantifies structural damages the situation changes. This direct physical 

impact cannot be explained by the more social related variables such as house ownership or 

female/child headed households which describe characteristics of people rather than buildings. While 

such aspects do not in itself influence damage to a house, they do influence the capacity of a household 

or family to find or rebuild new shelter or to retrieve food and water supplies. In particular aspects that 

resemble poverty or (economic) development, can be related to the physical quality of the buildings 

people live in, and thus also structural damages. Communities living in economically more developed 

areas might enjoy better (monitoring of) building standards.  

No direct or uniform measure of poverty on administrative level 4 is openly available for Nepal. 

Indirectly however, several variables can serve as poverty proxies. From the National Housing and 

Population Census 2011 five variables resembling developmental-economic vulnerability are derived: 

1. Toilet type: the census defines for each household the type of toilet, distinguishing between ‘no 

toilet facility’, ‘flush toilet’ and ordinary toilet’. One variable is derived from these numbers by 

calculating the percentage of households in each VDC without a toilet facility.  

2. Drinking water source: for each household the main source of drinking water is reported, 

distinguishing between ‘tap/piped water’, ‘tubewell/handpump’, ‘covered well’, ‘uncovered 

well’, ‘spout water’ and ‘river/stream’. The variable derived from this included the percentage 

of households deriving their drinking water from tap/piped water, since people with access to 

this water source are expected to live in a higher level of economic development. Also tap/piped 

water is often present in houses with a higher building quality. Also, the World Health 

Organization classifies tap or piped water as an improved drinking water source (World Health 

Organization, 2011).  

3. Literacy: in the census literacy rates for the population aged above 5 years in each VDC are 

presented. Literacy is included as a candidate predictor as a possible indicator of both poverty 

and development. Also literacy could be related to people’s abilities to improve seismic capacity 

of their houses.  

4. School attendance: the percentage of the population between 5 to 25 years who are currently 

going to school. School attendance is generally accepted as a poverty indicator.  

5. Household size: the average household size in a VDC is considered to be a proxy indicator for 

poverty. The relationship between household size and poverty is challenged, but not proven 

wrong (see: Lanjouw & Ravallion, 1994). Variable selection methods will show whether or not 

it should be included in the model.  

 

The maps in Figure 5.12 visualize the spatial distribution of the five socio-economic vulnerability 

variables. To a certain extent all maps show similar patterns, with higher concentrations in Northern 

Gorkha and Rasuwa, the Mid-Southern area and the North-Western part. This stresses the importance 

of checking for multicollinearity. In the end, only the best damage predictor(s) have to be included in 

the model.  



 

 
Figure 5.12a-e: Households without a toilet (a), households using mainly tap water (b), average literacy rate (c), school 

attendance (d), and average household size (e) (Data source: Nepal National Population and Housing Census 2011). 

 

5.3 Model Fitting 

 

 

 

This research question is answered in several sequential steps. Section 5.3.1 concerns data exploration, 

checking for and handling missing values, skewness in frequency distributions and multicollinearity.  

Section 5.3.2 concerns variable selection for the LM by means of automated selection procedures. 

Q3: Based on a multivariate linear regression and a random forest regression model, which 

candidate predictors can together make the best possible prediction of the defined response 

variable, and what is their (relative) importance? 

a) b) 

c) d) 

e) 



 

Hereafter, Section 5.3.3 discusses the fitting of the RF model, which is a different procedure. The fit of 

different RF models will be discussed by interpreting error measures. All best performing models are 

selected. The results of this section concern only the fit of the models to the training data (in-sample 

validation). No statements about the predictive accuracy of the models can be made until after the out-

of-sample validation (Section 5.5).  

5.3.1 Data Exploration  
The complete dataset, including training and testing set, contains 612 observations, each representing 

a separate VDC (level 4 administrative geographical entity). There are three possible dependent 

variables, which are all continuous, and 13 candidate predictor variables. Descriptive statistics of all 

variables such as maximum, minimum and mean can be found in Appendix III. This data exploration 

section applies to the complete dataset. From Section 5.3.2 to Section 5.3.3 only the training dataset is 

part of the analysis.  

Missing Values 

One requirement for the LM is that there are no missing values in either dependent or independent 

variables. The possible response variables are 1) the absolute number of completely damaged houses 

per VDC, 2) the relative number of completely damaged houses per VDC and 3) the House Damage 

Factor (HDF). As already mentioned in Section 5.1 of the 1,017 VDCs in this dataset 670 have a p-code 

assigned to them. Of these 670 VDCs the number of completely damaged houses is defined for 612 

VDCs. The number of both completely and partially damaged houses is defined for 517 VDCs. Since most 

of the candidate predictor variables were derived from national census data (or calculations based on 

census data) no values were missing here. The slope and Macroseismic Intensity variables were derived 

from raster data files that overlapped all 16 districts of interest. Also here, no values are missing.  

Frequency Distributions and Outliers 

Normally distributed dependent and independent variables in a LM or RF model can improve model fit 

and predictive accuracy. Also outliers (assumed to be observations outside 1.5 times the interquartile 

range above the upper quartile or below the lower quartile) are important to identify, since they can 

have implications for both the error measure and the model fit. The histogram in Figure 5.13a shows 

that the absolute number of completely damaged houses is very right skewed, with outliers on the right 

side.  

 
Figures 5.13a-c – Frequency distributions showing the number of VDCs on the vertical axis and the value for the according 

variable on the horizontal axis. The according variables are a) the absolute number of completely damaged houses per VDC, 

b) the number of completely damaged houses per VDC logartihmic transformed and c) the number of completely damaged 

houses per VDC cube root transformed. 

 

In 503 of the 612 VDCs less than 1,000 houses got completely damaged. In case of such negative 

skewness a common logarithmic (log10(x)) or cube root transformation (x1/3) is appropriate. Prior to 

a) b) c) 



 

these transformations the seven VDCs for which a zero was reported are changed into a one. After the 

logarithmic transformation the distribution is slightly left skewed (Figure 5.13b). This transformation 

caused an increase in the number of outliers from 24 (Figure 5.14a) to 28 (Figure 5.14b, due to duplicate 

values this is not visible in the boxplot). The cube root transformation resulted in a slightly right skewed 

distribution (Figure 5.13c), but had only seven outliers (Figure 5.14c) and thus seemed most 

appropriate. There is no reason to assume that these outliers originate from incorrectly measured or 

repoted values, hence they will be part of the analysis as they are.  

a)  

b)  

c)   

Figure 5.14a-c – Boxplot and outliers of a) completely damaged houses b) log of  

completely damaged houses and c) cube root of completely damaged houses. 

The second possible dependent variable is the relative amount of completely damaged houses per VDC 

(Figure 5.15a). The distribution is right skew with seven high outliers. These are VDCs with a relative 

damage amount between 227% and 710%. After a logarithmic transformation the distribution is 

somewhat more normally distributed but does show left skewness (Figure 5.15b) and contains 38 

outliers in the lower values. The milder cube root transformation resulted in a more normal distribution 

(Figure 5.15c) with only three outliers in the higher values. 

 
Figure 5.15a-c: Frequency distributions showing the number of VDCs on the vertical axis and the value for the according 

variable on the horizontal axis.  The according variables are a) the percentage of completely damaged houses per VDC, b) 

the percentage of completely damaged houses logarithmic transformed and c) the percentage of completely damaged 

houses cube root transformed. 

a) b) c) 



 

The third possible dependent variable is the composed Housing Damage Factor (HDF), combining data 

from the amount of both completely and partially damaged houses. Again the data is right skew 

distributed (Figure 5.16a), with 30 outliers (all above +/- 2,000). A logarithmic transformation gives a 

rather left skew distribution with 29 outliers (all below +/- 20) (Figure 5.16b). The cube root 

transformation of this variable (Figure 5.16c) returns a slightly right skew distribution with 13 outliers 

of observations above 2,780. For all possible response variables a cube root transformation gave the 

best result in terms of normality, hence these will be part of the further analysis (Section 5.3.2 - 5.3.3). 

  
Figure 5.16a-c: Frequency distributions showing the number of VDCs on the vertical axis and the value for the according 

variable on the horizontal axis. The according variables are a) the house damage factor per VDC, b) the house damage 

factor per VDC logarithmic transformed and c) the house damage factor per VDC cube root transformed. 

The frequency distributions of all candidate predictor variables are presented in Appendix IV. Many 

variables show right skewness, with a few high outliers. The variables that are quite normally distributed 

are household size, slope, Macroseismic intensity and literacy rate. Both population and the number of 

households are right skew, caused by a few metropolitan cities. Nearly all building material variables are 

left or right skew. This is again mostly caused by high outliers in VDCs with a relatively high population. 

The population variable has 38 outliers, which are VDCs with a population above 8,800. Transformations 

to more normal distribution are only applied in case this significantly improves the model’s predictive 

accuracy. The distributions of the variables after applied transformation are presented in Appendix V.  

Multicollinearity 

Figure 5.17 presents a correlation plot containing all candidate predictor variables. The colour scale on 

the right side displays the Pearson’s correlation coefficient (PCC). A value between -1 and +1 where -1 

indicates a perfect negative correlation and +1 a perfect positive correlation. There is quite some 

positive correlation visible between population and building material variables and between the 

different building material variables. For the LM no strongly correlating variables can be part of the 

model simultaneously. Population and household correlate perfectly positive (PCC = 1.00). The total 

number of households will be eliminated from the model as population figures are more common.  

 

a) b) c) 



 

 

Figure 5.17 – Correlation plot with Pearson’s coefficient for all candidate predictor variables. (explanation of variable codes: 

pop = population, hh_total = total number of households, hhsize = average household size, slope = mean slope value per 

VDC, mi = Macroseismic intensity, school = relative school attendance, literacy_rate = literacy rate, tap_water = percentage 

of households with tap water as their main source for drinking water, no_toilet = percentage of households without a toilet 

facility, mud_found = number of households with mud bonded bricks/stone foundations, cem_found = “ cement bonded 

bricks/stone foundation, rcc_found = “ RCC with pillar foundations, wood_found = “ wooden pillar foundations, mud_wall = 

“ mud bonded bricks/stone outer walls, cem_wall = “ cement bonded bricks/stone outer walls, wood_wall = “ wood/planks 

outer walls, bamboo_wall = “ bamboo outer walls, unbaked_wall = “ unbaked brick outer walls, thatch_roof = “ 

thatch/straw roofs, galv_roof = “ galvanized iron roofs, tile_roof = “ tile/slate roofs, rcc_roof = “ RCC roofs, wood_roof = “ 

wood/planks roofs, mud_roof = ‘’ mud roofs) 

  

Many building material variables correlate with each other. Therefore, they will be combined to three 

composite variables. These variables are composed as explained in Section 5.2.3 Physical Vulnerability 

Predictors. The new correlation plot is displayed in Figure 5.18. A strong correlation between low 

strength walls and foundations (PCC = 0.98) is still present. The low strength walls variable will not be 

part of the model. There is a medium strong correlation between the literacy rate and the number of 

households without a toilet (PCC = 0.67). Both variables will be included for automated variable 

selection. For the LM there will thus be ten candidate predictor variables included in the model.  

 



 

 
Figure 5.18: Correlation plot with Pearon’s Coefficient for all candidate predictor variables,  

including composite building material variables. (explanation of variable codes: LS_found = total numer of households with 

a low strenght foundation, LS_wall = “ low strength walls, LS_roof = “ low strenght roof, pct_tapwater = percentage of 

households using tap water as their main source for drinking water, pct_notoilet = total numer of households without a 

toilet facility) 



 

5.3.2 Linear Model Training 
For the LM a pre-selection of the best predicting set 

of predictor variables took place. If the final LM 

performance estimates are to be unbiased, it must 

be tested on data that has not been used to tune 

any aspect of the model, including variable 

selection. Therefore, from this point onwards only 

the training data are part of the analysis. As 

explained in Section 4.4 Model Fitting the variables 

are selected using the regression subsets selection 

function in R, with the exhaustive search method. 

The function was applied to all three possible 

response variables and their transformed versions. 

Variables that correlated were not included 

simultaneously. All regression subset selection plots 

are presented in Appendix VI. Figure 5.19 presents 

the plot of that version of each response variable 

(not transformed, logarithmic transformed or cube 

root transformed) that achieved the highest R2
adj. , 

which was the cube root transformed versions for all 

variables. The displayed models are not necessarily 

statistically significant. 

For all three possible response variables the highest 

R2
adj was achieved with the cube root 

transformation of the values. The horizontal axis of 

the plots shows the candidate predictor variables. 

The vertical axis shows the different R2
adj values of 

the selected model. Each row represents one 

model, where a black box indicates that this variable 

is included in the model and a white box indicates 

that it is not. The greyscale corresponds to the R2
adj 

square value.  

All three displayed plots show a similar pattern to 

some extent. The percentage of houses with a low 

strength roof and the percentage of households 

using tap water appeared not to contribute anything 

to the prediction of any of the response variables. 

Also the household size is hardly ever included, and 

when it is included the prediction of the model does 

not decrease by leaving it out. The MI is part of 

nearly all models. The transformed population 

variable is also included in most models. Only when 

predicting the cube root transformation of the 

relative amount of completely damaged houses this 

variables is less often included. This is logical since 

the response variable was already adjusted to 

population size by dividing by the number of 

Figure 5.19a-c: Regression Subset Selection Plots for three 
response variables 

Figure 19a-c: Regression Subset Selection plots for each 
possible response variable.  

a) 

b) 

c) 



 

damaged houses by total number of households. The third plot shows that with only the population and 

MI variable likely 53% of the variance in the response variable can be explained.  

The highest R2
adj is achieved by predicting the cube root transformation of the HDF by seven or eight 

predictor variables. Variables of all categories (exposure, hazard, physical vulnerability (both secondary 

hazard susceptibility and building quality) and socio-economic vulnerability) are selected as contributing 

factors. This model will be referred to as LM1.  

 
Figure 5.20: LM1 summary. (explanation of codes: LOGpop = logarithmic transformation of total population, slope = mean 

slope value, mi = mean Macroseismic intensity, school = relative school attendance, literacy_rate = literacy rate (0/100), 

LS_found = percentage of households with a low strength foundation, pct_notoilet = percentage of households without a 

toilet facility)  

The according R2
adj value indicates that 62.4% of the variance in the response variable can be explained 

by the selected predictors (which were all significant) (Figure 5.20). The normal R2 (not adjusted) is 0.63. 

In an equation this LM takes the following form. 

HDF = -9.53 + 1.13 X1 + 1.74 X2 + 0.07 X3 - 5.00 X4 + 4.01 X5  - 0.06 X6 - 2.91 X7 

HDF house damage factor = ((compl. dam. houses 0.75) + (part. dam. houses 0.25))1/3 

X1 mi, mean Macroseismic Intensity  

X2 LOGpop, populationlog 

X3 slope, mean slope (%) 

X4 LS_found, buildings with a mud or wooden foundation (%) 

X5 school, school attendance 5-25 year old’s (%) 

X6 literacy_rate, literacy rate (0/100) 

X7 pct_notoilet, households without a toilet facility (%) 

 

The coefficient assigned to each predictor represents the mean change in the response variable for one 

unit of change in the predictor variable. Their signs (being positive or negative) can be interpreted 

accordingly. As expected, an increased MI (X1) relates to an increased number of houses damaged.  

Secondly, a higher population (X2) associates with more absolute damage. Thirdly, VDCs with higher 

average slope values (X3) experienced more damage to houses.  

For the second physical vulnerability variable, the relative amount of buildings with a low strength 

foundation, the coefficient is negative. Meaning that for the Gorkha case VDCs with relatively more 

good quality foundations experienced more damage. The maps displaying the spatial distribution of low 

strength foundations (Figure 5.10a) and the HDF spread (Figure 5.4) confirm this relationship. A possible 

explanation for this pattern could be that big cities are more populated, thus having a higher absolute 



 

amount of houses damaged. At the same time these urban areas also have a relatively higher amount 

of good quality buildings than rural areas. Also, it is possible that the relative amount of houses with a 

low strength foundation is higher in reality, but that these are not reported in the census since they are 

often unregistered.  

Concerning the socio-economic vulnerability variables, a lower school attendance rate and a higher 

literacy rate correlated with heavier damage as expected. The percentage of households without a toilet 

also showed a coefficient sign opposite to what was expected. The damage was higher in VDCs where 

more households had a toilet facility. Possibly this is due to similar reasons of more developed building 

quality of registered households in urban areas.  

The absolute value of the t–statistic for each model parameter (Figure 5.21) indicates the relative 

importance of predictor variables in the model. With a t-test the null hypothesis that the coefficient 

associated with a predictor variable is not significant. The further away the t-value is from zero, the 

likelier it is that the null hypothesis should be rejected.  

  
Figure 5.21: absolute t-statistics predictors LM1. 

The values show that in LM1 the population and MI are the most important explaining variables, 

indicating that for the modelled case exposure and hazard related variables are most important in 

explaining damage. Hereafter follow consecutively toilet absence, low strength foundations, school 

attendance, slope and literacy rate.  

For the multivariate LM to be valid it should meet the assumptions of: linearity of residuals, 

heteroscedasticity of residuals and normality of residuals. Figure 5.22a plots the residuals against the 

predicted values. These displayed data points concern only the training dataset.  

 
Figure 5.22a-b: Residuals to predicted values (x-axis) of LM1 (a) and frequency distribution of the  

residuals of LM1 (b). 
 

b) 

a) 



 

Concerning the linearity assumption, the residuals are spread more or less randomly around the 0-line. 

This suggests that the assumption that the relationship is linear is reasonable. The residuals do get a bit 

larger as the damage increases, but the assumption of heteroscedasticity is sufficiently met. Concerning 

normality of the residuals, it can be noted that as the damage gets higher (HDF1/3 > 10) the model 

somewhat overestimates the damage, as the real values are below the regression line. The plot also 

shows that for this part of the LM the prediction relies on very few observations. When the damage is 

lower (HDF1/3 < 10) the fitted residuals line is very close to zero.  

 

5.3.3 Random Forest Model Training 
The RF model relies on less assumptions than the LM. The only assumption is, as with any other model 

that the sampling is representative for reality. The algorithm can handle covariance among independent 

variables and non-linearity. Several RF models are run, testing with the different possible response 

variables. Composite variables and the variables they are composed of were not included 

simultaneously. The RF algorithm was run for each possible response variable and its transformed 

versions. Below the results of the two RF models with the best fit are presented. 

Random Forest Model 1: House Damage Factor 

The model with the highest explained variance and R2 score was the one predicting the cube root 

transformation of the HDF with 24 predictors (hereafter referred to as RF1). The 24 included predicted 

variables can be reviewed in Figure 5.23a. Due to randomness in the model fitted values vary a little for 

every model run. The highest R2 score over 40 model runs is 0.72. The RF algorithm created 500 decision 

trees, trying 8 variables at each split. After +/- 50 trees the error rate stabilized (Figure 5.23b). No 

information on significance of variables or the nature of their influence on the response variable is 

returned. However, the relative importance of predictors can be interpreted by means of the variable 

importance plot (Figure 5.23a). The x-axis indicates the percentage increase in Mean Squared Error, 

reported on a 0% to 100% scale, in case the predictor variable of interest is permuted (randomly 

shuffled).   

The Macroseismic Intensity (mi) was most important in predicting the HDF, followed by seven building 

material variables. Surprisingly, four out of these seven variables relate to the roof material, while the 

percentage of low strength roofs did not come out as significant in any of the LMs. Population ranks as 

the tenth most important predictor. This is another difference with the LM. For LM1 the population 

variable was slightly more important than the MI variable, while in the RF model the MI is almost twice 

as important as the population. Also, it stands out that the number of buildings with a mud-bonded 

foundation is an important predictor. The eight most important predictors include variables from each 

of the four categories. 



 

Figure 5.23a-b: Variable importance plot of RF1 a) and error versus RF trees (b). (explanation of variable codes: pop = 

population, hh_total = total number of households, hhsize = average household size, slope = mean slope value per VDC, mi = 

Macroseismic intensity, school = relative school attendance, literacy_rate = literacy rate, tap_water = percentage of 

households with tap water as their main source for drinking water, no_toilet = percentage of households without a toilet 

facility, mud_found = number of households with mud bonded bricks/stone foundations, cem_found = “ cement bonded 

bricks/stone foundation, rcc_found = “ RCC with pillar foundations, wood_found = “ wooden pillar foundations, mud_wall = “ 

mud bonded bricks/stone outer walls, cem_wall = “ cement bonded bricks/stone outer walls, wood_wall = “ wood/planks 

outer walls, bamboo_wall = “ bamboo outer walls, unbaked_wall = “ unbaked brick outer walls, thatch_roof = “ thatch/straw 

roofs, galv_roof = “ galvanized iron roofs, tile_roof = “ tile/slate roofs, rcc_roof = “ RCC roofs, wood_roof = “ wood/planks 

roofs, mud_roof = ‘’ mud roofs) 

Plotting the residuals of the prediction (predicted HDF – measured HDF) to the predicted values results 

in a rather linear pattern (Figure 5.24).  

 
Figure 5.24: Absolute residuals (vertical axis) to predicted values (horizontal axis) of RF1. 

a) 

b) 



 

The damage in less affected VDCs is overestimated and the damage in more affected VDCs is 

underestimated. In general, the prediction thus ‘flattens’ the reality, resulting in smaller differences in 

damage between VDCs.  The model thus fits less good for relatively low and high values.  

Random Forest Model 2: Completely Damaged Houses 

The second highest R2 score of the RF models was achieved by the prediction of the cube root 

transformation of the number of completely damaged houses by the same 24 predictor variables as in 

RF1.  Over 40 model runs the highest R2 score reached by this model (referred to as RF2) was 0.70. 

Additionally, 69.2% of the variance in completely damaged houses in the training dataset was explained 

by the model. Figure 5.25 shows the decrease in Mean Squared Error in case of variable permutation. 

In general, the variable importance plot resembles the one of RF1. The five most important variables in 

this model are several building materials (thatch roofs, mud bonded foundations and mud walls, MI and 

population). Again, the roof material variables appear to be important. Especially the thatch roof 

variable stands out in its relative importance. In comparison to the RF1 model, the slope variable ranks 

quite high, and thus has more value in predicting the number of completely damaged houses than in 

predicting the HDF.  

  
Figure 5.25: Variable importance plot for RF2. 

Figure 5.26 displays the distribution of the residuals in relation to the predicted values. Again, the 

observed pattern is linear. In VDCs with more destroyed houses the damage is underestimated and in 

VDCs with less destroyed houses the damage is overestimated. For the VDCs in which the measured 

damage was neither very low nor high, more residuals are closer to zero. 



 

 
Figure 5.26: Absolute residuals (verical axis) to predicted values (horizontal axis) of RF2  

 

5.4 Optimal Raster Generalization 

5.4  

5.4.1 Zonal Statistics 
Showing maps of the process 

 

As explained, two different methods of generalizing the slope raster data to single VDC values are tested. 

There are two raster predictor variables: slope and MI. However, this analysis does not apply to MI since 

this data is not available until after an event occurred and thus needs to be included in the model with 

limited pre-processing. Section 5.4.1 explains how simple zonal statistics were derived and what the 

relative importance of the resulting predicting variable was in the models. Section 5.4.2 explains how 

the VDCs values were limited to building locations and what influence this had on the model fit and 

relative variable importance.  

5.4.1 Non-adjusted Slope 
The first generalization method was to derive a mean value based on all cells intersecting a zone. Figures 

5.27a presents the raster slope map derived from the DEM. Since the whole study area is located in the 

Himalayas, steep slopes are present all over the area.  In the Northern part of the study area steeper 

slopes are more prevalent than in the southern part, although even in the most Northern parts there 

are still some relatively large flatter areas visible. Figure 5.27b shows the calculated mean slope values 

for each VDC based on this first generalization technique.   

 

Q4: For predictor variables that are derived from continuous raster data; how is their predictive 

value influenced by adjusting their spatial extent to populated areas rather than complete zonal 

coverage? 



 

a)  

b)  
Figure 5.27a-b: Slope raster in study area (a) and mean slope values per VDC based on total area coverage (b). 

The map shows that high mean slope values were calculated for all of the Northern VDCs. The variable 

based on these slope values significantly contributed to the LM prediction of house damages, as 

presented in Section 5.3.2. However, its relative importance in the model is generally low. It ranked as 

the sixth most important variable out of seven variables. R2
adj increased from 0.6115 to 0.624 by adding 

the slope variable. In the RF1 and RF2 models it ranked as the 16th and 10th most important variable out 

of 24 variables. Permutation of the variable resulted in a 4.7% decrease in MSE.  



 

5.4.2 Slope Adjusted to Built-up Areas 
The second generalization method was to extract slope values only from built-up areas, based on 

building outlines derived from OSM (see Section 4.5). The resulting VDC values are displayed in Figure 

5.28.  

 
Figure 5.28: Slope values derived from built-up areas only. 

The pattern resulting from this method looks distinct from the previous one. On average, the slope 

values in the built-up area are lower compared to values based on the first generalization technique. 

The highest average slope value of a VDC is now 33% instead of 41%. Only for a few VDCs a mean slope 

value above 25% was calculated. It is clearly visible, that for the most Northern VDCs which had relatively 

large flatter areas the mean slope value is now lower in comparison to the first method. This indicates 

that most buildings in these VDCs are located in relatively flat areas. Therefore, these buildings will be 

less susceptible to landslides and possibly experienced less damage. 

Nevertheless, in comparison to the previous method, the variable derived from this generalization 

method resulted in an R2
adj increase of 0.6115 to 0.6232 by adding the built-up area slope variable. The 

R2
adj thus decreased with 0.13% in comparison to the slope variable not adjusted to built-up areas. In 

LM1 it ranked as the 7th, thus least, important variable. In the RF1 and RF2 model it ranked as the 18th 

and 11th most important variable out of 24 variables.  

In comparison, for both the LM and RF models a better model fit is reached with the slope variable that 

is not adjusted to built-up areas. However, the change is nihil. The initial slope variable was of relatively 

low importance in both models. An adjustment to built-up areas did not change this.   

 

 

 



 

5.5 Model Validation 
 

 

After the best fitting LM and RF models have been defined their predictive values can be assessed by 

performing out-of-sample validation.  

5.5.1 Out-of-sample validation 

Validation is performed by running the selected models on the test dataset containing 40% of the 

observations. Different measures of predictive accuracy result from this. 

Linear Model 

The R2
adj of the LM when applied on the test data is 0.52. Indicating that 52% of the variance in the 

HDF variable of the test dataset is explained by the model. The Root Mean Squared Error (RMSE) of a 

model prediction with respect to the estimated variable Xmodel is defined as the square root of the 

mean squared error: 
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where Xobs is observed values and Xmodel is modelled values at time/place i. The lower the RMSE, the 

better the model fit. The RMSE of the LM1 model on the testing data is 1.89 for the predicted HDF1/3 

(564 for HDF). This means that the standard deviation of the unexplained variance in this model is a 

HDF1/3 of 1.89. RMSE values can also be used to distinguish model performance on the training and on 

the testing data. The RMSE on the training data was 1.72 for HDF1/3 (517 for HDF). The model thus fitted 

better on the training data, but the difference in RMSE is limited and does not indicate heavy overfitting.  
 

Figure 5.29a plots the predicted against the measured HDF1/3 values for the test dataset. Especially in 

the VDCs with a higher HDF1/3, the model predictions deviate more from the real values. Figure 5.29b 

shows that again the residuals are linearly distributed, overestimating low values and underestimating 

higher values.  

 

 

 

Q5: How do the models perform regarding the prediction of an independent dataset? 



 

 
Figure 5.29a-b: Predictive accuracy of LM1 for HDF1/3. Plots of measured against predicted values (a) and predicted values 

against residuals (b).  

Figures 5.30 a and b display the reported and the by the LM predicted HDF for the VDCs where both the 

number of partially and completely damaged houses was reported. The correct identification of the 

VDCs with the highest damage are important with regard to prioritisation decision making by aid 

workers. Quite a number of the VDCs in the highest HDF category got predicted correctly, though the 

number of VDCs with a HDF above 2,000 is higher in reality than in the prediction. The number of VDCs 

for which the model predicted a HDF above 2,000 while it was lower in reality is limited to four. Overall 

the patterns are similar. The displayed predictions do include training data also.  

a)  

Measured HDF 

a) 

b) 



 

b)  
Figure 5.30a-b: Measured HDF (a) and LM predicted HDF values (b). 

 

Random Forest Model 1 

For the RF model a prediction on the test dataset resulted in an R2 of 0.63. The RMSE is 1.68 for HDF1/3 

(503 for HDF), indicating that the standard deviation of the unexplained variance in this model is a HDF1/3 

of 1.68. On the training dataset the RMSE was 1.56 for HDF1/3 (466 for HDF), so again there is no heavy 

overfitting of the model to the training data.  Figure 5.31a displays the predicted to the measured HDF1/3 

values. Similar as with the LM prediction, especially in the VDCs with a higher HDF the model predictions 

deviate more from the real values. The residuals distribution (Figure 5.31b) confirm this.  

 
Figure 5.31a-b: Predictive accuracy of RF1 for HDF1/3. Plots of measured against predicted values (a) and predicted values 

against residuals (b). 

LM Predicted HDF 

a) 

b) 



 

Figure 5.32 displays the HDF values predicted by the RF1 model. The RF1 model identifies more highest 

damaged VDCs than the LM model (16 in stead of 9).  

 

 
Figure 5.32: RF1 predicted HDF values. 

 

Random Forest Model 2 

For the second RF model (predicting the number of completely damaged houses rather than the HDF) 

a prediction on the test dataset resulted in an R2 of 0.60. The RMSE is 1.17 for ‘completely damage 

houses1/3‘(626 for completely damaged houses), indicating that the standard deviation of the 

unexplained variance in this model is 1.17. The RMSE on the training data for RF2 was (555 for 

completely damaged houses). An increase of 12.8% in RMSE indicates that the model might be slightly 

overfitted to the training data. Figure 5.33a displays the predicted to the measured values. The plot 

shows that the model tends to overestimate less damaged VDCs and underestimate higher damaged 

VDCs. Resulting in a more equal spread of damage categories, as is confirmed by the maps in Figures 

5.34 a and b.  

RF1 Predicted HDF 



 

 
Figure 5.33a-b: Predictive accuracy of RF2 for (completely damaged houses)1/3. Plots of measured against predicted values (a) 

and predicted values against residuals (b). 

 

Figure 5.33 displays the reported (a) and the by RF2 predicted number of completely damaged houses 

per VDC (b). Quite some VDCs are predicted in a damage category lower than reported. 

a)  

Measured CDH 

a) 

b) 



 

b)  
Figure 5.34a-b: Measured completely damaged houses (a) and RF2 predicted completely damaged houses (b) 

 

5.6 Model Comparison 
 

 

In this section the three models are compared in terms of their predictive performance (as presented 

in the previous section) and their general usability.  

5.6.1 Predictions Compared 
Table 5.1 summarizes the different measures of predictive accuracy and some general model 

characteristics as presented in previous sections. The most accurate prediction is made by the first 

random forest model predicting the House Damage Factor. This model can explain more variance in 

response variables than the other two models. Also the average prediction error per VDC is lowest and 

the model seems to be least sensitive to overfitting, judging from the relatively low decrease in R2 

between training and testing data. Despite the fact that the response variable used for the RF2 model 

has the lowest number of outliers, the Root Mean Squared Error (RMSE) is highest, with an average 

error of 626 houses per VDC.  

 

Model Response variable Nr. of 
predictors 

R2
test

 (R2
train) – 

(R2
test) 

RMSE Nr. of 
outliers 

LM1 House Damage Factor 7 0.52 -0.10 564 13 

RF1 House Damage Factor 24 0.63 -0.08 502 13 

RF2 Completely damaged houses 24 0.60 -0.10 626 7 

Table 5.1: Models predictive accuracy measures and characteristics  

 

Q6: How do the models compare to each other in terms of predictive performance and general 

usability? 

RF2 Predicted CDH 



 

Comparing Prediction Errors 

Figures 5.35 presents the spatial distribution of prediction errors for consecutively LM1, RF1 and RF2. 

Prediction errors were calculated by subtracting the measured values from the predicted values. When 

comparing the residual distributions of the different models to each other, first of all it stands out that 

for all three models the Eastern, Southern and Western border areas of the study area are subject to 

mostly overestimations. The damage in the middle and more Northern areas tends to be more 

underestimated. Another observation is that the LM1 prediction has the most VDCs with an error of 

more than 250 or less than -250. Especially in the district of Dolakha the damage in many VDCs is heavily 

underestimated. Looking back at the original data, the number of fully damaged houses divided by the 

total number of households results in a value above 100% for 46 out of the 50 assessed VDCs in Dolakha 

(see also Figure 5.3). Even though the true total number of households might be higher than is reported 

in the 2011 Census (due to unregistered households) it is unlikely that this results in a percentage above 

100 for nearly all VDCs in the district. Therefore, this leads to suspect that in reality the damage was 

lower than what was reported, and thus an underestimation by the model is not very surprising.  

a)   



 

b)  

c)  
Figure 5.35a-c: Residuals of LM (a), residuals of RF1 (b) and residuals of RF2 (c) (residual = predicted - measured) 

 
Also, nearly all models overestimated damage for a lot of VDCs in the most Western district Lamjung. In 

comparison to other Eastern, Southern and Western bordering districts the reported numbers of houses 

damaged were very low in Lamjung. For 33 out of the 44 assessed VDCs the number of houses 

completely damaged was below 50.  

Comparing Prediction of Priority Areas 

Since an important aim of PIMs is to identify aid priority areas in the initial phase after a disaster it is 

important to compare how accurately the models predicted the highest priority areas, being the VDCs 



 

with the highest measured damage. Tables 5.2a, b and c show the fifteen VDCs with the highest 

predicted damage. The second column indicates where the same VDC was ranked in the original 

measured data. The VDCs displayed are all part of the testing dataset consisting of 222 observations in 

total.  

For the LM1 model the table shows that out of the 15 VDCs with the highest predicted HDF, 7 were also 

within the top 15 VDCs with the highest measured HDF. For the RF1 model, 10 out of the 15 VDCs with 

the highest predicted HDF were also within the top 15 highest measured HDF VDCs. For RF2, out of the 

15 VDCs with the highest predicted number of completely damaged houses, 8 were also within the top 

15 of VDCs with the highest measured number of completely damaged houses. The RF1 model thus 

identified most, two-third, of the fifteen highest priority areas correctly. The LM1 model identified a 

little less than half of the priority areas correctly and for the RF2 model this was a little more than half.  

b) Random Forest 1 

Priority 
rank 

Predicted 

Priority 
rank 

Measured 

VDC name 

1 3 Panauti Municipality 

2 2 Nilkanth 

3 54 Banepa Municipality 

4  48 Ugratara Janagal 

5 45 Chapaguan 

6  1 Panchkhal 

7  4 Chautara 

8 6 Manthali 

9 10 Tatopani 

10  11 Barhabise 

11  7 Mahadevsthan Mandan 

12 219 Gaunshahar 

13 23 Salyan Tar 

14 8 Madanpur 

15 15 Jiwanpur 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2a-c: Highest damage ranking LM1, b) highest damage ranking RF1 and c) highest damage ranking RF2. 

Comparing the RF1 and RF2 model predictions can give additional insights since both models are the 

same, except for the response variable they predict (HDF for RF1 and number of completely damaged 

houses for RF2). Out of the 15 priority VDCs 13 overlap between both models. This indicates that the 

a) Linear Model 1 

Priority 
rank 

Predicted 

Priority 
rank 

Measured 

VDC name 

1 2 Nilkanth 

2 54 Banepa Municipality 

3 4 Chautara 

4  3 Panauti Municipality 

5 45 Chapagaun 

6 17 Thulo Sirubari 

7  10 Tatopani 

8 21  Ichok 

9 48 Ugratara Janagal 

10  219 Gaunshahar 

11  7 Mahadevsthan Mandan 

12 12 Pida 

13 44 Dhursa 

14 40 Katunje 

15 1 Panchkhal 

c) Random Forest 2 

Priority 
rank 

predicted 

Priority 
rank 

measured 

VDC name 

1  3 Panauti Municipality 

2  1 Panchkhal 

3  2 Nilkanth 

4  214 Gaunshahar 

5  122 Banepa Municipality 

6   6 Mahadevsthan Mandan 

7   51 Chapaguan 

8  18 Jiwanpur 

9  7 Madanpur 

10  11 Barhabise 

11  72 Ugratara Janagal 

12 28 Chhatre Deurali 

13 23 Salyan Tar 

14 12 Pida  

15 8 Manthali 



 

addition of partially damaged houses in the HDF variable hardly influences the priority areas identified 

by the models.  

In predictions by both models some VDCs stand out because of their high predicted rank and their low 

priority rank in reality. The VDC Gaunshahar, for example, is ranked as 9th and 4th most damaged VDC, 

while in the original dataset it was among the 20 VDCs with the least damage. The RF models predicted 

1,690 completely damaged houses and an HDF of 1,377, while in reality only 4 houses were reported to 

be completely damaged and an HDF of 4.8 was calculated. Since the VDC was subject to quite some 

damage predictors (MI=7.4, population=6,611, ranking high in mud bonded foundations and walls), a 

reported number of 4 completely damaged houses is rather surprising. Especially since in surrounding 

VDCs with similar population numbers around 1,000 to 2,000 damaged houses were reported. It 

appeared that at the time of assessment formally the VDC Gaunshahar did not exist. In May 2014 this 

VDC together with 2 other VDCs (Udipur and Chandisthan) were merged into the existing Besishahar 

Municipality VDC (District Development Committee Lamjung, 2014). For Udipur no numbers were 

reported at all in the original assessment file and for Chandisthan 14 completely damaged houses were 

reported. Essentially, because of outdated administrative border files the model made predictions for 

VDCs that are no longer existent. It is likely that more ‘non-existing’ VDCs are present in the original 

assessment file and the model output, because the total number of VDCs in the administrative borders 

file used is 3,754, while the most recently reported number of VDCs is 3,157 (Techsansar, 2016). 

Another way to compare the model’s accuracies in predicting priority areas is by dividing all VDCs of the 

test dataset in five equally sized priority classes based on the reported damage, and to compare this to 

the predicted priority classification. Table 5.3 shows for each of the three models the percentage of 

VDCs for which the correct priority level was predicted and the percentage of predictions that was in a 

category too high or too low. Each class consisted of either 44 or 45 observations. VDCs with the most 

damage got assigned a priority level 1.  

 

     LM1 RF1 RF2 

Priority 
level 

Correct 
level 
predicted  

Too 
high 

Too 
low 

Correct 
level 
predicted  

Too 
high 

Too  
low 

Correct  
level 
predicted 

Too  
high 

Too  
low 

1 62% 38% - 69% 31% - 66% 34% - 

2 41% 29% 30% 45% 28% 27% 48% 29% 23% 

3 32% 29% 39% 39% 29% 32% 30% 25% 45% 

4 36% 30% 34% 43% 21% 36% 43% 19% 38% 

5 51% - 49% 69% - 31% 69% - 31% 

Total: 45% 25% 30% 53% 22% 25% 51% 21% 28% 

Table 5.3: Share of predictions in correct priority categories for LM1, RF1 and RF2. For each of the five priority levels the 

numbers define how much VDCs got predicted the same priority level as was measured (green), how much VDCs got 

predicted one or more priority level(s) higher than measured (blue) and how much VDCs got predicted one or more priority 

level(s) lower than measured (red).  

 

The accuracies for the different models are very similar. All models assign most VDCs correctly in priority 

levels 1 and 5, and they all assign less than 40% of the observations correctly for the level 3 category. 

From the wrong predictions in this category, all models assigned more VDCs to a level too low than to a 

level too high. In general, the models thus underestimated damage in the middle priority class. 

Moreover, for the three middle categories (levels 2, 3 and 4) all models assign a wrong priority level to 

more than half of the observations. The total predictive accuracy of the priority levels resembles the 



 

compared performance of the models in terms of R2 scores. The RF1 model predicts best, followed by 

the RF2 and the LM1 model. All models predict more VDCs in priority categories too low than in 

categories too high. In that sense all models tend to underestimate rather than overestimate.  

5.6.2 General Usability of Models 
Apart from the predictive power of the models also their usability plays an important role in determining 

which model is most suitable for implementation in humanitarian disaster response. This usability can 

be viewed from two different perspectives. On the one hand, there is the usability of model output for 

end-users (being aid workers abroad in the affected area). On the other hand, there are admin-users 

(being those in local aid offices responsible for the tasks from data preparation to producing a visual 

PIM output).  

Admin-user Perspective 

For those who are responsible for producing a useful model output for their colleagues in the field it is 

important that they can run the model on an affected area without having to take many time intensive 

steps. Once the final models are in use, both the LM and RF models require very little computation time 

because of the relatively small datasets. However, since the models will need a lot of further training 

and fine-tuning before they can be implemented, it is also important to consider their time 

intensiveness for constructing and training the models. In this sense, the LM takes more time to 

construct beforehand, since the admin-user needs to check for normal distributions of variables, 

covariance among the variables, preselect the best predictor variable subset and after fitting check for 

the model assumptions concerning residuals. The RF models do not require any of these steps, since 

the only assumption is reliable input data. Also, he or she does not need to perform a separate analysis 

in order to select the best variable subset. In terms of further model training and improvement the RF 

models are thus preferred over the LM model.  

However, also the LM model has some advantages over the RF models. One of these advantages is that 

admin-users can gain insight by analysing the nature of the individual coefficients of the variables. This 

can show if the relation between a variable in the model and the damage is positive or negative. For this 

case study this gave the insight that the relation between damage on the one hand and foundation type, 

school attendance and toilet presence on the other hand was opposite to what was expected. Such 

findings can be an incentive for the admin-user to find explanations and possibly to redefine the 

predictor variables used.  

Comparing the two RF models, despite the decreased R2 and the relatively high prediction error, the 

RF2 model might be preferable because its response variable is composed of a single measured value 

(completely damaged houses) instead of two measured values (partially and completely damaged 

houses). Because of that, less post-event data is required for future model training. Additionally, as 

mentioned in Section 5.1.2 partially damaged measures are often questionable. In that sense, to train 

on only completely damaged houses could give a more reliable output of priority areas.  

End-user Perspective 

One important model requirement from the end-user’s perspective is the output’s intuitiveness, 

meaning that the model output can be easily grasped without much thought. From this perspective, it 

can be stated that the RF2 output, representing the absolute number of completely damaged houses, 

is easier to interpret for end-users than the predicted House Damage Factor represented by LM1 and 

RF1. The RF2 output makes it easier for end-users to form an image in their minds of the disaster’s 

impact. This also makes the output easier and faster to communicate between end-users. In a post-

disaster environment decision makers have to be able to communicate clearly. With the HDF output an 

end-user would first have to invest time and effort to understand the meaning of the measure and to 



 

figure out how to interpret this in the field. With the number of completely damaged houses this is not 

the case.  

Figure 5.36 presents a possible priority index output map based on the RF2 model prediction for the 

complete study area. The map shows two isolines of the earthquake’s Macroseismic intensity. When 

disseminated, a map like this should either be accompanied by a spreadsheet containing all values and 

VDC names, or be presented online enabling users to zoom and click for exact prediction values. Districts 

bordering the study area are not included in this analysis, though they could be included if also country 

specific data were prepared for these districts. Additionally, the models uncertainty should be included 

in the map, for example by reporting the expected average prediction error of 626 houses per VDC. 

 

 
Figure 5.36: Possible visual PIM output, displaying the RF2 predicted damage values for the study area. 

 

Another important requirement from the end-user’s perspective concerns the information that he or 

she can derive from the model output. The absolute measure of the RF2 model output offers the 

possibility to derive other measures from it. For example, by dividing the predicted number of 

completely damaged houses by the total number of households a relative measure of housing damage 

can be created, presenting the percentage of houses completely damaged per VDC. The models 

predicting the HDF are not suitable for such a calculation.  

Also, the output produced by the RF2 model can be more easily corrected and/or supplemented in the 

field. As soon as the first damage assessments have taken place they can be included in the model, 

either as new, corrected or confirmed values. For correction or addition of HDF values both fully and 

partially damaged houses will have to be assessed.  



 

6 Discussion 
 

This chapter first presents a short overview of the applied research methodology. Hereafter, the most 

important findings and their implications are discussed. At the same time, limitations of the research 

approach are addressed. An additional section of recommendations for follow-up research is presented 

at the end of the Chapter. 

 

6.1 Research Summary 

In the first days following a natural disaster, humanitarian decision makers often deal with a scarcity of 

information on the spatial distribution of the event’s impact, and thus the need for humanitarian aid of 

the affected population. By learning from data of past events Priority Index Models can rapidly produce 

an estimate of a disaster’s impact, which can help decision makers to identify aid priority areas. The 

main objective set in this research was to explore the possibilities for a model that rapidly estimates 

post-earthquake aid neediness for any earthquake-prone area on earth, learning from data of past 

events. To achieve this, the case of the Gorkha earthquake of 2015 in Nepal was used as a test case. 

Pre- and post-event open data related to the earthquake were collected to construct a training dataset. 

In order to find relationships in the dataset a multivariate linear regression model and a random forest 

regression model were fitted to the data. Based on a comparison of on the one hand the predictive 

accuracy and on the other hand the general usability of the best fitted models, conclusions can be drawn 

about which model is most suitable to be successfully extended to other earthquake-prone areas in the 

future.  

 

6.2 Main Findings, Limitations and Recommendations 
The first step towards creating a predictive model for aid priority areas after the Gorkha event was to 

select a suitable impact assessment dataset to reflect different levels of aid neediness after the 

earthquake. The Initial Rapid Assessment dataset by the Nepalese Red Cross was considered the most 

suitable. The main reasons to select this dataset were that damage to residential buildings is an incentive 

for many aid clusters; the dataset has many data points on a low administrative level which enables to 

make distinctions within the most affected area and; the use of a common measure creates more 

possibilities for future model training. The two possible aid priority indicators that were derived from 

the dataset were the ‘number of completely damaged houses per VDC’ and the ‘House Damage Factor’. 

A critical remark here is that the quantification of aid neediness by structural damages remains 

questionable. Damages to residential buildings can give a good idea about how the inhabitants are 

affected from multiple aid-cluster perspectives. However, it does not resemble their capacity to cope 

with this impact. Family structures for example, can be very important in explaining aid neediness. It is 

often observed in a post-disaster scenario that female-headed households have more difficulties in 

rebuilding their house. Nevertheless, it seems almost impossible to define an aid neediness indicator 

that includes aspects of coping capacity and at the same time can be defined similarly for multiple past 

events. In this perspective, the strength of structural damages as a proxy measure is that it is a single-

feature and commonly assessed measure, which makes it easier to reproduce for future model training. 

Also, it can be objectively measured and is straightforward in its interpretation, which increases the 



 

reliability of reported numbers. Possibly, Priority Index Models should not strive to produce a 

quantitative ‘aid neediness’ output that includes coping capacity. Instead, during decision making 

processes, damage estimations can be combined with information about the coping capacities of 

affected communities. This way, aid workers that are familiar with the local context can decide 

themselves what a destroyed house means in terms of aid neediness for different parts of the 

population.  

Another remark concerns the quality and reliability of the Initial Rapid Assessment dataset. It was 

observed that for quite some VDCs rough estimations were made based on total household figures, 

sometimes providing the same relative number of houses damaged for all VDCs in a district. Also, the 

list of assessed VDCs contained VDCs that were formally non-existent at the time of data collection. Data 

quality issues caused by rough estimations, gap-filling or outdated base-information are likely an 

inherent aspect of rapid assessments done (by volunteers) in a post-disaster environment. This means 

that the model is trained on an estimated situation which does not necessarily represent the real post-

disaster situation. Therefore, detailed damage assessments, done after the first post-disaster phase, 

should be preferred over initial rapid assessments for future training of the model. 

The second research question aimed at defining candidate predictor variables from open data to predict 

the previously defined aid neediness indicator(s). A total of 27 candidate predictors were defined, 

distributed over four different categories: hazard, exposure, building quality, susceptibility to secondary 

hazards, and socio-economic vulnerability. The data behind most variables was derived from the 2011 

National Population and Housing Census Nepal. The hazard variable was expressed as the mean 

Macroseismic Intensity per VDC as derived from USGS ShakeMaps.  

One main drawback observed at this part of the case study is the absence of a good overview of the 

total number of houses per VDC at the time of the earthquake (the exposure variable). Also the 

population figures derived from the 2011 Census are likely quite different from the actual numbers in 

2015. The census reports a total population of 26,494,504 in 2011, while the World Bank (2017b) 

estimated the total number in 2015 at 28,513,700. It is likely that census data will be outdated for other 

earthquake-prone countries also, since most governments conduct a population (and housing) census 

once every ten years. On top of that, censuses can undercount vulnerable people (low-incomes, children 

and minorities) and informal settlements. To overcome these limitations, future models could make use 

of WorldPop data (see: http://worldpop.org.uk). They provide high spatial resolution data on estimated 

human population distribution in raster format. This way, a possible error marge will be more uniform 

for different countries. Another important limitation are the uncertainties in the USGS ShakeMap and 

its correlation with the location of seismic measurement stations. Especially since Macroseismic 

intensity is one of the most important predictors in all models, the final model output is likely influenced 

by these uncertainties. This could explain for example why the most Eastern district Okhaldunga has 

quite some heavily damaged VDCs while the MI was reported below 6.0 for the whole district. The 

uncertainties in this area are relatively high (see Figure 5.6) and thus the MI might have been higher in 

reality. Another limitation is that in this case study aftershocks were not taken into account because the 

date of the damage assessment was not clearly defined. If assessment dates are defined for future 

training cases, it is advisable to include aftershock intensity data from ShakeMap in the hazard variable. 

A final drawback regarding the model’s predictor variables is that for Nepal no openly available 

composite measures of the population’s socio-economical vulnerability such as poverty and 

development indexes were collected/found. This is discussed in more detail in Section 6.3. 

To answer the third research question, a multivariate linear regression model and a random forest 

regression model were fitted to a training dataset containing 60% of all observations. For the linear 

model (LM1), the best fitting model consisted of seven predictor variables (populationlog, slope, 

http://worldpop.org.uk/


 

Macroseismic intensity, school attendance, literacy rate, foundation type and toilet presence) predicting 

the House Damage Factor1/3. The population and the Macroseismic Intensity variables evidently were 

the most important in this model. From the random forest algorithm the two best performing models 

were selected. The first included 24 predictor variables predicting the ‘House Damage Factor’1/3 (RF1). 

The second best fitting model, with the same input variables, predicted the absolute number of 

‘completely damaged houses’1/3 (RF2). In both models the ‘Macroseismic Intensity’, ‘mud bonded 

bricks/stone walls’, ‘mud-bonded bricks/stone foundations’ and ‘thatch/straw roofs’ ranked as the four 

most important variables. Low strength building quality variables were very important in the RF models.  

In all models the Hazard related variable was most or second-most important. But where the LM1 model 

assigned second-most importance to population, the RF models favoured multiple building material 

variables. One explanation for this could be that in the LM1 model the building material variables were 

included as composite variables because of multicollinearity. Also, when comparing models RF1 and RF2 

it is evident that the population variable was more important in the model predicting completely 

damaged houses (RF2). When using composite building material variables the predictive accuracy of the 

models decreases, but when extending the model to other countries individual building material classes 

might differ, making a generalization to ‘low-strength’ and ‘high-strength’ composites inevitable.  

In the LM1 model, some variable relationships turned out to be opposite to what was expected. VDCs 

with more damaged houses corresponded to VDCs with higher school attendance, higher toilet 

presence and better foundation qualities. The significance of these variables indicates that they are 

suitable predictors for the Nepal case. However, because of the unexpected coefficients these 

relationships are likely case-specific and not generalizable to other countries. If the nature of these 

relationships indeed differs for other countries, it can be analysed if a more general relationship exists 

between damage and a composite measure of socio-economic vulnerability. Alternatively, a single 

(proxy-) measure for socio-economic vulnerability such as literacy rate could be used. The relative 

importance of both socio-economic and physical vulnerability is lower than what could be expected 

based on existing models. Possibly these factors are overestimated in existing models.  

To answer the fourth question, it was analysed if and how the predictive value of the slope variable was 

influenced by adjusting its spatial extent to populated areas only, in comparison to complete area 

coverage. A visual inspection of landslide locations and slope values led to the conclusion that indeed 

slope could be a proxy indicator for earthquake induced landslide susceptibility. However, the initial 

slope variable was of relatively low importance in all three models. An adjustment to built-up areas did 

not change that. For all models a better model-fit was achieved with the slope variable that was not 

adjusted to built-up areas. However, the change was nihil. Based on the Gorkha case there seems to be 

no motive to adjust slope data to populated areas in Earthquake PIMs.  

A remark has to be made here about the completeness of the OSM buildings layer. Of the sixteen most 

affected districts, five had a ‘buildings-to-population-ratio’ between 1:7 and 1:11, which seems to be 

unrealistic. Additionally, since most of the buildings were mapped after the event it is likely that, 

depending on the area, for future affected areas the buildings layer is far more incomplete. The case 

study results give no information about whether slope values are related to structural damages in other 

countries or during other events also, since susceptibility to earthquake-induced landslides depends on 

more factors than slope only, which will differ per region.  Future model training on events in other 

countries should indicate whether slope values are related to structural damages, not only in Nepal but 

in other countries also.  

Hereafter, the models were validated ‘out-of-sample’ by running them on a test dataset consisting of 

40% of the original dataset. The RF1 model predicted 63% of the variance in the spatial distribution of 



 

damage in the test dataset (R2=0.63). Similarly, the RF2 model explained 60% (R2=0.60) and the LM1 

model 53% (R2=0.53). All models overestimated the damage in less affected VDCs and underestimated 

the damage in more affected VDCs.  

The fact that extreme values were not covered sufficiently by the models could indicate that some 

predictor variables are missing in the model. This missing variable(s) should be able to explain higher 

differences. Since the model underestimated damage for a lot of highly populated VDCs it was analysed 

if a distinction between rural and urban areas would improve the predictions. In the Nepalese Census 

of 2011 in total 58 VDCs are labelled as urban areas (Nepal Central Bureau of Statistics, 2012). Of these 

58 VDCs only 12 are within the study area. These are not enough data points to test the model on urban 

areas only. However, by leaving these 12 VDCs out the models can be applied to rural areas only. As a 

result, the LM1 R2 increased from 0.52 to 0.53, the RF1 stayed the same with R2=0.63 and the RF2 

increases a little from 0.60 to R2=0.61 (all on testing data). Future model training can show if another 

distinction between urban and rural entities can further improve the predictive accuracies of the 

models. Another critical remark here is that due to the fact that the model is trained on an uncertain 

quantification of the impact, the model’s predictions could be closer or further away from the real 

situation than the error measures indicate.  

During the out-of-sample validation, the importance of the hazard and exposure variables was 

confirmed again. The RF models were able to explain 49% of the variance in damage with MI and 

population as the only input variables. Similarly, the LM explained 48%. By adding the other 22 variables 

the predictive accuracy gradually increases. Based on this it can be stated that depending on data 

availability the exact set of included variables can differ per event or country, but that the MI and 

population should always be included.  

The final methodological step of the research was to compare the selected models in terms of their 

predictive accuracy and general usability for its target users. For all measures of predictive accuracy (R2 

and RMSE) the RF1 model performed best. Also for the prediction of correct priority levels the RF1 

performed best, predicting the right level for 53% of the 222 VDCs in the test dataset and 69% of the 

VDCs in the highest priority category. Apart from the quantitative predictive accuracy of the models, 

their performance can be assessed by their usefulness for targeted users. From an admin-user 

perspective the RF2 model, despite the relatively high prediction error, will be most suitable for 

continuation of model training because there are less model assumptions in comparison to LM1 and 

the response variable requires less data and is likely more reliable in comparison to RF1. Also from an 

end-user perspective the RF2 model has the advantage that its output is more intuitive and can be more 

easily enriched in information.  

From this case study, it could be concluded that in general the RF2 model is most favourable, since the 

higher usability for both admin- and end-users outweighs the small decrease in predictive accuracy in 

comparison to RF1. Final conclusions on this matter can only be drawn after model verification for other 

countries has taken place. Nevertheless, the linear model approach should not be disregarded 

completely in future model training cases because of the insights it provides about whether or not a 

certain relationship between a predictor and response variable is case- of country-specific.  

 

 

 



 

6.3.1 Model Extrapolation 
 

 

 

Finally, what remains is to discuss the possibilities to extrapolate the developed Priority Index Model to 

other earthquakes, both within Nepal and outside of Nepal.  In the end, this determines the usability of 

pre- and post-event open data for estimating aid priority areas at any place on earth, which forms the 

main research question. Based on the Gorkha case study, several statements can be made about the 

expectations and preconditions for usability of the applied modelling approach for future events.  

 

For the model in its current state, it is likely that an estimation of similar accuracy can be produced for 

a future event in Nepal. The main reason for this expectation is that for the whole of Nepal data on the 

24 exact same input variables is available. A similar estimation means that around two-third of the 

highest priority areas will be identified correctly. Similar to the Gorkha model output, it is likely that the 

estimation will not cover extreme values very well. Damage in heavily damaged VDCs will thus likely be 

underestimated and in the least damaged VDCs it will be overestimated. No impact assessment or 

validation data is required to produce a useful model output. However, when these data become 

available after several days the prediction can be improved. Damage assessment numbers from 

individual VDCs can be added as single observations to the training dataset. Additionally, a future model 

estimation could be improved by decreasing the training dataset to include only VDCs that resemble the 

now affected VDCs. For example, in case a new earthquake in Nepal occurs in the Eastern part of the 

country, not affecting any dense urban districts like Kathmandu and Dhading, the training dataset could 

be limited to the less populated VDCs. This would require the definition of a good threshold for ‘more 

populated’ and ‘less populated’ areas that can be applied to any country. As described above, applying 

the distinction made by the Nepalese government hardly improved the models, though some positive 

change was observed.  

 

Next, something can be said about the usability of the current model for an event outside of Nepal. Even 

if data on all of the input variables is available and prepared, based on the current model, which is 

trained on only one case, the model output will likely not be accurate. This is expected mostly due to 

the expected presence of case- or country-specific relations in the current model. These relations were 

partially highlighted by the linear model applied in this study, but only additional model training on other 

events can confirm this, after which they can be eliminated and possibly replaced.  

 

However, after training the model on multiple cases across different countries and if the same input 

data is collected for at least one variable in each category (hazard, exposure, physical vulnerability and 

socio-economic vulnerability) the current model can be expected to produce an estimation that can be 

useful to support relief distribution decision-making. The extent of this usability depends on several 

factors. First of all, the usability stands or falls with data availability and -preparedness. Data of some 

variables most certainly can be obtained for other countries also, but other variables will be more 

difficult to obtain in a similar manner.  

 

The hazard variable data obtained through USGS ShakeMaps will be available for all significant 

earthquakes at any place on earth (USGS, 2017a). Data on total population numbers for each 

MQ: Based on a case study of the Gorkha 2015 earthquake, what is the usability of pre- and post-

event open data of past earthquakes in estimating priority areas for humanitarian aid rapidly after 

an earthquake at any place on earth? 



 

geographical entity within a country can usually be obtained through openly available census data. In 

case these are not available previously mentioned WorldPop data could be used. When combined with 

a Shapefile of administrative entities population density can be calculated from the population numbers. 

Harmonization of input data sources can also contribute to more similar model performances between 

estimations for different countries. The slope variable, as one of the physical vulnerability variables, can 

also be defined uniformly for any country through DEMs obtained through SRTM Digital Elevation 

GeoPortal. Building material data on the other hand, is less widely available. As explained above, 

differing materials per country will make the use of composite building quality variables inevitable. For 

the socio-economic vulnerability variables the availability differs. Literacy rates and household size data 

are usually obtainable through national population censuses or national bureaus of statistics. Drinking 

water sources, toilet presence and school attendance are less prevalent. Such information is often 

provided by NGOs and can be found through portals such as the HDX platform.  Not only because these 

data are not so prevalent, but also because their relationship to damage is likely not universal (except 

for drinking water source) in the future they could be replaced by an alternative variable. This can be 

either an existing socio-economic vulnerability index or a suitable indicator. The precondition for this 

alternative variable is that it should be standardized and available for any country on a low 

administrative level (preferably level 4).  

 

Despite the fact that future model estimations are expected to be valuable for aid prioritisation decision 

making, some critical remarks should be made. One remark is that there are many factors influencing 

the severity of damage to houses that differ between countries. For each seismic event the mechanisms 

coming with it will be different. Concerning secondary hazards for example, earthquakes can lead to 

fires, liquefaction or tsunamis, which can all cause severe damage to houses. Such factors are unique to 

the environment that an event takes place within. They could be included for specific cases only, just 

like slope was included as a landslide susceptibility variable in this study’s model. However, because this 

requires training on many additional predictor variables it increases model complexity. This study aims 

at model simplicity to make it more universally applicable. From that perspective, also slope could be 

excluded from the model. Another remark is that besides the 24 defined predictor variables there are 

many more factors that play a role. For example, houses can be damaged because of their height or 

because high neighbouring buildings collapse. No model could ever cover all damage contributing 

factors. Neither should a PIM aim to do so. 

 

In short, the extent to which the model can be applied across different countries and events can be 

improved by: excluding secondary hazard susceptibility variables, finding an alternative uniform socio-

economic vulnerability variable and using composite building quality variables. These are all actions that, 

while improving the general applicability of the model, will likely also worsen the performance for 

individual cases. But especially the need for a rapidly produced model output is an argument to take 

these steps.  

 

Finally, it should be mentioned that usability of the model output also relates to the availability of 

alternative information source that can help aid prioritisation decision making. Generally, there is an 

information scarcity in the immediate post-disaster phase. A PIM output could in this situation fill a gap 

by providing a visual and spatial overview of the impact. In any situation, PIM output should be field 

verified and used as a supplementary information source.  

 



 

6.4 Suggestions for Follow-up Research 
Due to the explorative nature of this research these suggestions for follow-up research mainly concern 

the next logical steps to be taken towards the development of an Earthquake PIM. First of all, it will be 

necessary to extent the model’s reliability by training it on more cases. When adding new training cases 

to the model, it is advisable to select a suitable case based on the availability of a reliable and complete 

damage assessment dataset. This data should take the same form as the one used in this study: absolute 

number of completely damaged residential buildings per geographical entity (preferably on a low 

administrative level). Apart from impact data, total population numbers and a ShakeMap covering the 

impacted area are the minimum requirements for new training cases. The structured training dataset 

and statistical analysis script (see Appendix VII) of the Gorkha case can speed up the process of future 

training. Depending on data availability, several predictor variables might be eliminated from the model. 

It can be expected that a limited number of predictor variables and a clearly measurable output variable 

will result in a model producing more reliable predictions for other events in other countries. Model 

simplicity can thus contribute to generalizability of the output. However, further research should verify 

this hypothesis. 

Another interesting research could be to further investigate the suitability of damage to residential 

buildings as a proxy indicator for humanitarian aid neediness. One of the interviewees stated: “The next 

thing is to know, after knowing what houses are damaged, is where people went. Since people are the 

target of relief, you want to know where they are, rather than their damaged homes” (Becks, 2016). 

Such a topic might be investigated by statistically analysing the relationship between damage 

assessment data and aid distribution data.  

Another suggestion is to further investigate a crucial part for the successful usage of PIMs in general. 

This concerns the way in which PIM output can best be implemented and presented. Regarding 

presentation, a PIM output should not be presented in isolation, but complemented with (visual) 

information on the communities’ vulnerability and pre-event situation. This additional information 

could be classified based on the related aid cluster, since these are determinant for the structure of aid 

coordination. Becks suggested that leading organizations of the separate cluster could be the entry 

point for implementing PIM: “PIMs could be implemented in the pre-deployment training. At the Red 

Cross everyone takes a two-week training before being deployed to an emergency area, called FACT 

training. Here they could learn how to make sense of such a model” (Becks, 2016).  

A final suggestion concerns the absence of a single composite variable indicating socio-economic 

vulnerability on a low administrative level. The objective of this research could be to identify a uniform 

socio-economic vulnerability variable that covers many disaster prone countries on a low administrative 

level. One aspect to look into here could be the option to create an index of the different socio-economic 

variables included in the current model. Than for other countries a similar index can be constructed if 

not all the same variables are available. A proposed methodology for this is Principle Component 

Analysis. 



 

7 Conclusion 
 

This chapter provides a brief summary of the overall conclusions drawn from the discussed results 

based on the research objectives. It answers the main research question. 

 

 

 

To summarize, for the Gorkha case study the collected pre- and post-event open data proved to be 

substantially useful for the prediction of multi-cluster aid neediness, and thereby the identification of 

priority areas. A random forest regression model predicting the absolute number of completely 

damaged houses per VDC explained 60% of the variance in damage. A better prediction could be made 

by adding information on the number of partially damaged houses to the response variable. However, 

partial damage inherently is an inconsistent measure and the prediction of only completely damaged 

houses has advantages for both admin and end-users. 

The main objective of this study was to explore the possibilities and feasibility of using pre- and post-

event open data to train a model to rapidly estimate post-earthquake aid neediness for any earthquake 

prone area on earth. This objective is reflected in the main research question. Based on the above 

discussion of the research findings, conclusions can be drawn about the general usability of both pre- 

and post-event open data for Earthquake PIMs.  

First of all, it is important to mention here that this study was explorative of nature and comprised one 

single-event case study. Nevertheless, the findings obtained during the study led to expectations about 

the performance of an Earthquake PIM covering any place on earth. A random forest model trained on 

the Gorkha case correctly predicted the highest aid priority level for two third of the observations. 

Therefore, for the case study itself both pre- and post-event open data have proven to be sufficiently 

usable to estimate aid priority areas up to the extent were they could provide useful information for 

post-event aid distribution. It was observed that extreme values were not covered adequately by the 

model, indicating that some explanatory variable is still missing.  

For a future event within Nepal a model output of similar accuracy is expected, though the training 

dataset might have to be adjusted to represent the newly affected area more in terms of population 

numbers. For a future event outside of Nepal, the current model, trained on only the Gorkha case, will 

not be useful due to the presence of case- and country-specific relationships between predictor and 

response variables. This concerns socio-economic vulnerability and single building material variables.  

However, after training the model on multiple other events across different countries it is expected that 

if the same input data is collected for at least one variable in each category (hazard, exposure, physical 

vulnerability and socio-economic vulnerability) for a future event, the same model can produce an 

estimation that is useful to support relief distribution decision-making. Data availability and 

preparedness are key factors in the actual usability of the model output. Fortunately, data on the most 

important predictor (hazard and exposure) is widely and uniformly available. For physical and socio-

economic vulnerability predictors alternative methods of including them in a generalized manner might 

have to be sought. Additionally, the usability of model output can also be assigned to the overall 

MQ: Based on a case study of the Gorkha 2015 earthquake, what is the usability of pre- and post-

event open data of past earthquakes in estimating priority areas for humanitarian aid rapidly after 

an earthquake at any place on earth? 



 

information-scarcity (usually) existing in the immediate post-disaster phase. Model output will always 

have to be field verified and used supplementary.  

The extent to which the model can be successfully applied to different countries and cases can be 

improved by excluding secondary hazard susceptibility variables, finding an alternative uniform socio-

economic vulnerability variable and using composite building quality variables. Additionally, by 

experimenting with different combinations of predictor variables and adding more training cases, 

country- or case-specific predictors can be eliminated with time. In general, overfitting a PIM to specific 

cases or countries is a pitfall, therefore a next important step in developing these models is to combine 

multiple cases in one training dataset.  

Apart from this general usability, the research has also provided insights that are valuable for further 

model development. First of all, despite the limitations in data quality discussed earlier, especially 

hazard and exposure related open data have proven to be very useful for the prediction of structural 

damages. As was expected based on existing earthquake impact models, both had a strong and positive 

influence on structural damages. These could be considered as indispensable model components and 

are widely available. 

Furthermore, during the initial research stage there turned out to be many initiatives that support and 

facilitate the collection and dissemination of open data that can be used for earthquake PIMs, for 

example USGS ShakeMap, OpenStreetMap (OSM) and Humanitarian Data Exchange (HDX). A valuable 

aspect of these data is that they are often uniform in standards and measures across different countries. 

Besides these initiatives, national population and housing censuses remain a valuable resource for both 

country-specific exposure and vulnerability related data.  

Finally, based on the Gorkha case it can be stated that the reliability of model output greatly depends 

on data availability. As a result of this, data preparedness will likely be a major factor in adapting to the 

unexpectedness that comes with seismic hazards.  

Concerning the usability of post-event open data specifically, it was found that residential building 

damage assessment data are a relatively objective and common measure that relates to multiple 

country specific factors. As a response variable it produces a model output that can be relevant for 

multiple humanitarian aid clusters. Nevertheless, a great drawback is that training a PIM on voluntary 

collected rapid assessment data means training on an estimation rather than on a real situation. Another 

important post-event dataset concerned the hazard data. Despite its uncertainties, in each model the 

USGS ShakeMap was an important predictor of structural damages. In combination with its spatial 

coverage and rapid and open dissemination it has proved to be a valuable source for the further 

development of Earthquake PIM’s.  

Also conclusions can be drawn about the usability of certain pre-event open data. It was already 

mentioned that population had an important function in the model. The physical and socio-economic 

vulnerability predictors on the other hand were harder to capture in the models and appeared to be 

less obvious related to damaged. This provides another argument to advise the use of standardized or 

composite measures of communities’ vulnerabilities. Additionally, if data on building materials is 

available for other countries it is like that the materials differ. Therefore, a generalization of building 

materials into composite building quality variables is likely inevitable. 

Based on the comparison of three different models, a maximum usability of the collected pre- and post-

event data can be reached by applying a random forest regression algorithm predicting only the number 

of completely damaged houses. For targeted end-users this model has the advantage of an intuitive 



 

output which can be easily enriched. Also for admin-users, the limited model assumptions, reliable 

output and less data required make it favourable over the other statistical approaches. A machine 

learning approach brings advantages mainly in terms of predictive accuracy and time spent on 

constructing. Nevertheless, the multivariate linear regression model has proven to be valuable 

especially in this explorative phase, because of the insights it gave in individual variable relationships.  
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Appendix I – IRA Assessment Template  

 

 

  



 

Appendix II – Description of Building Materials 
 

Based on the predominant building types in the affected areas, housing can be categorized into four 

main types based on their vertical and lateral load-bearing systems, in line with the 2011 Census: 

• Low-strength masonry buildings are constructed locally (in available stone, fired brick and sun-dried 

brick) in mud mortar. They are typically two-storey buildings excluding the attic, with timber or bamboo 

floors overlaid with mud. The roofs are mostly of timber or bamboo covered with tiles, slate, shingles 

or corrugated galvanized iron (CGI) sheets. The walls tend to be very thick, depending upon the type of 

walling units. The seismic capacity of these buildings is very low, limited by the integrity of structural 

components, strength of walls, and lack of elements tying the structure together (ring beams at wall or 

roof level). Vertical and horizontal wooden elements are sometimes embedded in walls, providing some 

level of earthquake resistance, but this is very uncommon. 

• Cement-mortared masonry buildings have walls of fired brick, concrete block or stone in cement-sand 

mortar and are usually constructed up to three storeys. The floors and roofs are made of reinforced 

concrete or reinforced brick concrete. Despite the use of high-quality materials, these buildings suffer 

from deficient construction practices. Provision of earthquake-resistant features is not commonly found 

in these buildings. 

• Reinforced concrete frames with masonry infill consist of cast-in-situ concrete frames with masonry 

partition and infill walls (brick, block or stone masonry) that are not tied to the frame. With floors and 

roofs of reinforced concrete slabs, these buildings are usually constructed up to four storeys, but 

buildings up to even 20 storeys have been observed. Despite the use of high quality materials and the 

fact that seismic detailing has become more common in recent years, the vast majority of these 

buildings suffer from deficient construction practices. 

• Wood and bamboo buildings are constructed with wooden planks, thatch or bamboo strip walling 

materials, with flexible floors and roof. These suffered less damage from the earthquake due to their 

light weight 

Source: Government of Nepal National Planning Commission, 2015 

  



 

Appendix III – Data Exploration 
 

 

Explanation of codes: id = identification code, vdc_name = name of VDC, hlcit_code = government 

code, dist_name = district name, pcode = OCHA p-code, hh_total = total number of households, hhsize 

= average household size, slope = mean slope (%), compl_damg_houses = completely damaged 

houses, pct_compl_damg_houses = completely damaged houses (%), part_damg_houses = partially 

damaged houses, school_attendance = school attendance 5 – 25 year olds (%), literacy_rate = literacy 

rate (%), pct_lowstrength_found = low strength foundations (%), pct_lowstrength_walls = low 

strength walls (%), pct_lowstrength_roof = low strength roofs (%), mud_found = mud bonded 

bricks/stone foundations, cem_found = cement bonded bricks/stone foundation, rcc_found = RCC 



 

with pillar foundations, wood_found = wooden pillar foundations, thatch_roof = thatch/straw roofs, 

tap_water = tap water as main drinking water source, tube water = tube water as main drinking water 

source, bamboo_wall = bamboo outer walls, unbaked_wall = unbaked brick outer walls, mud_wall = “ 

mud bonded bricks/stone outer walls, cem_wall = cement bonded bricks/stone outer walls, 

wood_wall = wood/planks outer walls, mud_roof = mud roofs, pct_part_damg_houses = partially 

damaged houses (%), hdf = house damage factor, mi = macroseismic intensity, pct_tapwater = tap 

water as main drinking water source (%), pct_notoilet = households without a toilet facility (%), 

galv_roof = galvanized iron roofs, tile_roof = tile/slate roofs, rcc_roof = RCC roofs, wood_roof = 

wood/planks roofs, cov_water = covered well as main drinking water source, uncov_water = 

uncovered well as main drinking water source, area_sqm = area in m2, pop = total population, 

pop_dens = population density, spout_water = spout as main drinking water source, cuberoot_hdf = 

hdf1/3, LOGpop = total populationlog, no_toilet = households without a toilet, flush_toilet = flush toilet, 

ord_toilet = ordinary toilet, river_water = river water as main drinking water source.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Appendix IV – Frequency Distributions Candidate Predictor Variables 
 

 

Explanation of variable codes: pop = population, pop_dens = population density, hhsize = average 

household size, slope = mean slope value per VDC, mi = Macroseismic intensity, school_attendance = 

relative school attendance, literacy_rate = literacy rate, pct_lowstrength_found = low strength 

foundations (%), pct_lowstrength_walls = low strength walls (%), pct_lowstrength_roof = low strength 

roofs (%), pct_tapwater = percentage of households with tap water as their main source for drinking 

water, pct_notoilet = percentage of households without a toilet facility, mud_found = number of 

households with mud bonded bricks/stone foundations, cem_found = “ cement bonded bricks/stone 

foundation, rcc_found = “ RCC with pillar foundations, wood_found = “ wooden pillar foundations, 



 

mud_wall = “ mud bonded bricks/stone outer walls, cem_wall = “ cement bonded bricks/stone outer 

walls, wood_wall = “ wood/planks outer walls, bamboo_wall = “ bamboo outer walls, unbaked_wall = “ 

unbaked brick outer walls, thatch_roof = “ thatch/straw roofs, galv_roof = “ galvanized iron roofs, 

tile_roof = “ tile/slate roofs, rcc_roof = “ RCC roofs, wood_roof = “ wood/planks roofs, mud_roof = ‘’ 

mud roofs)  



 

Appendix V – Frequency Distributions after Transformation 
 

Logarithmic transformation of population variable: 

 

  



 

Appendix VI – Regression Subset Selection Plots 
 



 

 

Explanation of codes: adjr2 = adjusted R-squared, LOGpop = populationlog, hhsize = average household 

size, slope = slope (%), mi = macroseismic intensity, school = school attendance among 5 – 25 year 

olds, literacy_rate = literacy rate (%), LS_found = low strength foundations, LS_roof = low strength 

roofs, pct_notoilet = households without a toilet (%), pct_tapwater = households using tap water as 

their main drinking water source.   



 

Appendix VII – PIM Training Gorkha Case R Script 
 

 

#This script trains and predicts the nepal priority index model on 

the gorkha case of nepal 2015. It is meant to show how the model was 

constructed and is not suitable for applying to new events. 

 

#load packages 

library(caret) 

library(readxl) 

library(C50) 

library(leaps) 

library(psych) 

library(randomForest) 

 

# import file (nepal_hdf has all the observations for which a hdf 

was caluclated (571) and nepal_cdh has all the observations for 

which a number of completely damaged houses was reported (612)) 

nepal_hdf <- read_excel("C:/Users/Evelien/Dropbox/Priority Index - 

Earthquake Nepal/Model Training/nepal_hdf.xlsx") 

nepal_cdh <- read_excel("C:/Users/Evelien/Dropbox/Priority Index - 

Earthquake Nepal/Model Training/nepal_cdh.xlsx") 

# dataset for the whole study area 

nepal_SA <- read_excel("C:/Users/Evelien/Dropbox/Priority Index - 

Earthquake Nepal/Model Training/nepal_studyarea.xlsx") 

 

# DATA EXPLORATION 

# explore frequency distribution of possible y-variables (some 

examples) 

hist((nepal_cdh$compl_damg_houses),main="y = completely damaged 

houses") 

hist(log(nepal_hdf$hdf),main="log(HDF)") 

summary(boxplot(nepal_hdf$hdf)) 

 

# add LOG and CUBEROOT transformation of Y variables to the table  

# remove 0's before transformations 

nepal_cdh$compl_damg_houses[nepal_cdh$compl_damg_houses==0]=1 

nepal_hdf$hdf[nepal_hdf$hdf==0.250]=1.0 

# creating cube root transformed variables 

nepal_hdf$cuberoot_hdf = ((nepal_hdf$hdf)^(1/3)) 

nepal_cdh$cuberoot_cdh = ((nepal_cdh$compl_damg_houses)^(1/3)) 

# visualizing the final two possible response variables 

hist((nepal_hdf$cuberoot_hdf),main="(HDF)^1/3") 

hist((nepal_cdh$cuberoot_cdh),main="(completely damaged 

houses)^1/3") 

 

# check for skewness among candidate predictor variables and 

transform if necessary (log for right-skwew, reflect + log for left-

skew) 

multi.hist(nepal_hdf[,c(5,7,8,9,16,17,18,42,49,24:27,29:33,35:40)],d

ensity=TRUE,freq=TRUE,bcol="cyan",main=" ") 

nepal_hdf$LOGpop=log(nepal_hdf$pop) 

nepal_cdh$LOGpop=log(nepal_cdh$pop) 

nepal_SA$LOGpop=log(nepal_SA$pop) 

nepal_hdf$found_reflect=(1.001-(nepal_hdf$pct_lowstrength_found)) 



 

nepal_hdf$LOGfound=(log(nepal_hdf$found_reflect)) 

 

names(nepal_SA)[names(nepal_SA) == 'mercalli_intensity'] <- 'mi' 

 

# split up test and training data (hdf dataset) 

set.seed(123) 

train_ind=(runif(nrow(nepal_hdf))<=0.60) 

train_hdf <- nepal_hdf[train_ind, ] 

test_hdf <- nepal_hdf[!train_ind, ] 

# same for the cdh dataset 

set.seed(123) 

train_ind=(runif(nrow(nepal_cdh))<=0.60) 

train_cdh <- nepal_cdh[train_ind, ] 

test_cdh <- nepal_cdh[!train_ind, ] 

 

# check for multicollinearity 

pairs.panels(train_hdf[, 

c(56,7,8,10,14:19)],cor=TRUE,lm=TRUE,hist.col="cyan",method="pearson

",scale=FALSE,pch = 20, cex = 1) 

cor.plot(train_hdf[, 

c(56,7,8,10,14:19)],colors=TRUE,main="Correlation plot (abs)") 

 

  # LINEAR REGRESSION 

# automated variable selection 

regss=regsubsets(cuberoot_hdf ~ LOGpop + hhsize + slope + mi + 

school_attendance + literacy_rate + pct_notoilet + pct_tapwater + 

pct_lowstrength_found + pct_lowstrength_roof,data=train_hdf) 

plot(regss,scale="adjr2",main="y = (HDF)^1/3") 

summary(regss) 

# train the linear regression model with the selected variables 

lm1=lm(cuberoot_hdf ~ LOGpop + mi + hhsize + slope + 

school_attendance + literacy_rate + pct_lowstrength_found + 

pct_notoilet,data=train_hdf) 

summary(lm1) 

# relative importance of the predictor variables 

varImp(lm1, scale = FALSE) 

 

# checking performance of the model on the training dataset 

plot(lm1,main="LM1") 

# assign the prediction to the matrix, still cube root transformed 

train_hdf$predLM_cr=lm1$fitted.values 

# calculate root mean squared error and rquared on training data 

postResample(train_hdf$predLM_cr,train_hdf$cuberoot_hdf) 

#plot measured to predicted 

plot(train_hdf$predLM_cr,train_hdf$cuberoot_hdf,main="LM1 - Measured 

vs Predicted (training dataset)",xlab="Predicted 

(HDF)^1/3",ylab="Measured (HDF)^1/3") 

 

# run the LM model on the test dataset 

predLM_cr=predict(lm1,test_hdf) 

# assign the prediction to the matrix 

test_hdf$predLM_cr=predLM_cr 

# calculate the RMSE and rsquared 

postResample(test_hdf$predLM_cr,test_hdf$cuberoot_hdf) 

# plot the residuals 

test_hdf$resLM_cr=((test_hdf$predLM_cr)-(test_hdf$cuberoot_hdf)) 



 

plot(test_hdf$cuberoot_hdf,test_hdf$resLM_cr,main="LM1 - Residuals 

vs Fitted (test dataset)",xlab="Predicted 

(HDF)^1/3",ylab="Residuals") 

# undo the cuberoot transformation, to get realistic RMSE 

test_hdf$predLM=((test_hdf$predLM_cr)^3) 

postResample(test_hdf$predLM,test_hdf$hdf) 

# plot measured to predicted 

plot(test_hdf$predLM_cr,test_hdf$cuberoot_hdf,main="LM1 - Measured 

vs Predicted (test dataset)",xlab="Predicted 

(HDF)^1/3",ylab="Measured (HDF)^1/3") 

# apply the LM model on the complete study area 

predLM_cr=predict(lm1,nepal_SA) 

nepal_SA$predLM_cr=predLM_cr 

nepal_SA$predLM=((nepal_SA$predLM_cr)^3) 

 

 

  # RANDOM FOREST  

#rf1 model predicting (house damage factor)^1/3 

rf1=randomForest(cuberoot_hdf ~ pop + mi + slope + pop_dens + hhsize 

+ literacy_rate + school_attendance + thatch_roof + mud_roof + 

rcc_roof + wood_roof + tile_roof + galv_roof + wood_wall + 

bamboo_wall + mud_wall + unbaked_wall + cem_wall + mud_found + 

wood_found + rcc_found + cem_found + tap_water + 

no_toilet,data=train_hdf,mtry=8,importance=TRUE,ntree=200) 

print(rf1) 

#rf2 model predicting (completely damaged houses)^1/3 

rf2=randomForest(cuberoot_cdh ~ pop + mi + slope + pop_dens + hhsize 

+ literacy_rate + school_attendance + thatch_roof + mud_roof + 

rcc_roof + wood_roof + tile_roof + galv_roof + wood_wall + 

bamboo_wall + mud_wall + unbaked_wall + cem_wall + mud_found + 

wood_found + rcc_found + cem_found + tap_water + 

no_toilet,data=train_cdh,mtry=8,importance=TRUE,ntree=200) 

print(rf2) 

 

# checking performance of the model on trainig data (only RF2) 

summary(rf2) 

#calculate RMSE and rsquared on training data 

train_cdh$predRF2_cr=rf2$predicted 

postResample(train_cdh$predRF2_cr,train_cdh$cuberoot_cdh) 

# check relative importance of predictors 

importance(rf2,type=1) 

varImpPlot(rf1,type=1,main="RF1 (y = HDF^1/3)") 

varImpPlot(rf2,type=1,main="RF2 (y = CDH^1/3)") 

# add predicted values and retransformation of them to table (and 

plot against eachother) 

train_cdh$predRF2=((train_cdh$predRF2_cr)^3) 

plot(train_cdh$predRF2,train_cdh$compl_damg_houses,main="Measured VS 

predicted (training data)") 

 

# run the RF1 model on the test dataset 

predRF1_cr=predict(rf1,test_hdf) 

# assign the prediction to the matrix 

test_hdf$predRF1_cr=predRF1_cr 

# calculate the RMSE and rsquared 

postResample(test_hdf$predRF1_cr,test_hdf$cuberoot_hdf) 



 

plot(test_hdf$predRF1_cr,test_hdf$cuberoot_hdf, main="RF1 - Measured 

vs Predicted (test dataset)",xlab="Predicted 

(HDF)^1/3",ylab="Measured (HDF)^1/3") 

# plot the residuals 

test_hdf$resRF1_cr=((test_hdf$predRF1_cr)-(test_hdf$cuberoot_hdf)) 

plot(test_hdf$cuberoot_hdf,test_hdf$resRF1_cr,main="RF1 - Residuals 

vs Fitted (test dataset)",xlab="Predicted 

(HDF)^1/3",ylab="Residuals") 

# undo cr transformation to get realistic RMSE 

test_hdf$predRF1=((test_hdf$predRF1_cr)^3) 

postResample(test_hdf$predRF1,test_hdf$hdf) 

# plot measured to predicted 

plot(test_hdf$predRF1_cr,test_hdf$cuberoot_hdf,main="RF1 - Measured 

vs Predicted (test dataset)",xlab="Predicted 

(HDF)^1/3",ylab="Measured (HDF)^1/3") 

# apply the RF model on the complete study area (SA) 

predRF1_cr=predict(rf1,nepal_SA) 

nepal_SA$predRF1_cr=predRF1_cr 

nepal_SA$predRF1=((nepal_SA$predRF1_cr)^3) 

 

# run the RF2 model on the test dataset 

predRF2_cr=predict(rf2,test_cdh) 

# assign the prediction to the matrix 

test_cdh$predRF2_cr=predRF2_cr 

# calculate the RMSE and rsquared 

postResample(test_cdh$predRF2_cr,test_cdh$cuberoot_cdh) 

plot(test_cdh$predRF2_cr,test_cdh$cuberoot_cdh, main="RF2 - Measured 

vs Predicted (test dataset)",xlab="Predicted 

(CDH)^1/3",ylab="Measured (CDH)^1/3") 

# plot the residuals 

test_cdh$resRF2_cr=((test_cdh$predRF2_cr)-(test_cdh$cuberoot_cdh)) 

plot(test_cdh$cuberoot_cdh,test_cdh$resRF2_cr,main="RF2 - Residuals 

vs Fitted (test dataset)",xlab="Predicted 

(CDH)^1/3",ylab="Residuals") 

# undo cr transformation to get realistic RMSE 

test_cdh$predRF2=((test_cdh$predRF2_cr)^3) 

postResample(test_cdh$predRF2,test_cdh$compl_damg_houses) 

# plot measured to predicted 

plot(test_cdh$predRF2_cr,test_cdh$cuberoot_cdh,main="RF2 - Measured 

vs Predicted (test dataset)",xlab="Predicted 

(CDH)^1/3",ylab="Measured (CDH)^1/3") 

# apply the RF model on the complete study area (SA) 

predRF2_cr=predict(rf2,nepal_SA) 

nepal_SA$predRF2_cr=predRF2_cr 

nepal_SA$predRF2=((nepal_SA$predRF2_cr)^3) 

 

# save dataframes with prediction to local drive 

write.csv(nepal_SA, file = "C:/Users/Evelien/Dropbox/Priority Index 

- Earthquake Nepal/Model Training/nepal_SApred.csv") 

 

#END 

 


